1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use tokio_current_thread::{self as current_thread, CurrentThread};
use tokio_current_thread::Handle as ExecutorHandle;
use runtime::current_thread::Builder;

use tokio_reactor::{self, Reactor};
use tokio_timer::clock::{self, Clock};
use tokio_timer::timer::{self, Timer};
use tokio_executor;

use futures::{future, Future};

use std::fmt;
use std::error::Error;
use std::io;

/// Single-threaded runtime provides a way to start reactor
/// and executor on the current thread.
///
/// See [module level][mod] documentation for more details.
///
/// [mod]: index.html
#[derive(Debug)]
pub struct Runtime {
    reactor_handle: tokio_reactor::Handle,
    timer_handle: timer::Handle,
    clock: Clock,
    executor: CurrentThread<Timer<Reactor>>,
}

/// Handle to spawn a future on the corresponding `CurrentThread` runtime instance
#[derive(Debug, Clone)]
pub struct Handle(ExecutorHandle);

impl Handle {
    /// Spawn a future onto the `CurrentThread` runtime instance corresponding to this handle
    ///
    /// # Panics
    ///
    /// This function panics if the spawn fails. Failure occurs if the `CurrentThread`
    /// instance of the `Handle` does not exist anymore.
    pub fn spawn<F>(&self, future: F) -> Result<(), tokio_executor::SpawnError>
    where F: Future<Item = (), Error = ()> + Send + 'static {
        self.0.spawn(future)
    }

    /// Provides a best effort **hint** to whether or not `spawn` will succeed.
    ///
    /// This function may return both false positives **and** false negatives.
    /// If `status` returns `Ok`, then a call to `spawn` will *probably*
    /// succeed, but may fail. If `status` returns `Err`, a call to `spawn` will
    /// *probably* fail, but may succeed.
    ///
    /// This allows a caller to avoid creating the task if the call to `spawn`
    /// has a high likelihood of failing.
    pub fn status(&self) -> Result<(), tokio_executor::SpawnError> {
        self.0.status()
    }
}

impl<T> future::Executor<T> for Handle
where T: Future<Item = (), Error = ()> + Send + 'static,
{
    fn execute(&self, future: T) -> Result<(), future::ExecuteError<T>> {
        if let Err(e) = self.status() {
            let kind = if e.is_at_capacity() {
                future::ExecuteErrorKind::NoCapacity
            } else {
                future::ExecuteErrorKind::Shutdown
            };

            return Err(future::ExecuteError::new(kind, future));
        }

        let _ = self.spawn(future);
        Ok(())
    }
}

impl<T> ::executor::TypedExecutor<T> for Handle
where
    T: Future<Item = (), Error = ()> + Send + 'static,
{
    fn spawn(&mut self, future: T) -> Result<(), ::executor::SpawnError> {
        Handle::spawn(self, future)
    }
}

/// Error returned by the `run` function.
#[derive(Debug)]
pub struct RunError {
    inner: current_thread::RunError,
}

impl fmt::Display for RunError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{}", self.inner)
    }
}

impl Error for RunError {
    fn description(&self) -> &str {
        self.inner.description()
    }

    // FIXME(taiki-e): When the minimum support version of tokio reaches Rust 1.30,
    // replace this with Error::source.
    #[allow(deprecated)]
    fn cause(&self) -> Option<&Error> {
        self.inner.cause()
    }
}

impl Runtime {
    /// Returns a new runtime initialized with default configuration values.
    pub fn new() -> io::Result<Runtime> {
        Builder::new().build()
    }

    pub(super) fn new2(
        reactor_handle: tokio_reactor::Handle,
        timer_handle: timer::Handle,
        clock: Clock,
        executor: CurrentThread<Timer<Reactor>>) -> Runtime
    {
        Runtime {
            reactor_handle,
            timer_handle,
            clock,
            executor,
        }
    }

    /// Get a new handle to spawn futures on the single-threaded Tokio runtime
    ///
    /// Different to the runtime itself, the handle can be sent to different
    /// threads.
    pub fn handle(&self) -> Handle {
        Handle(self.executor.handle().clone())
    }

    /// Spawn a future onto the single-threaded Tokio runtime.
    ///
    /// See [module level][mod] documentation for more details.
    ///
    /// [mod]: index.html
    ///
    /// # Examples
    ///
    /// ```rust
    /// # extern crate tokio;
    /// # extern crate futures;
    /// # use futures::{future, Future, Stream};
    /// use tokio::runtime::current_thread::Runtime;
    ///
    /// # fn dox() {
    /// // Create the runtime
    /// let mut rt = Runtime::new().unwrap();
    ///
    /// // Spawn a future onto the runtime
    /// rt.spawn(future::lazy(|| {
    ///     println!("running on the runtime");
    ///     Ok(())
    /// }));
    /// # }
    /// # pub fn main() {}
    /// ```
    ///
    /// # Panics
    ///
    /// This function panics if the spawn fails. Failure occurs if the executor
    /// is currently at capacity and is unable to spawn a new future.
    pub fn spawn<F>(&mut self, future: F) -> &mut Self
    where F: Future<Item = (), Error = ()> + 'static,
    {
        self.executor.spawn(future);
        self
    }

    /// Runs the provided future, blocking the current thread until the future
    /// completes.
    ///
    /// This function can be used to synchronously block the current thread
    /// until the provided `future` has resolved either successfully or with an
    /// error. The result of the future is then returned from this function
    /// call.
    ///
    /// Note that this function will **also** execute any spawned futures on the
    /// current thread, but will **not** block until these other spawned futures
    /// have completed. Once the function returns, any uncompleted futures
    /// remain pending in the `Runtime` instance. These futures will not run
    /// until `block_on` or `run` is called again.
    ///
    /// The caller is responsible for ensuring that other spawned futures
    /// complete execution by calling `block_on` or `run`.
    pub fn block_on<F>(&mut self, f: F) -> Result<F::Item, F::Error>
        where F: Future
    {
        self.enter(|executor| {
            // Run the provided future
            let ret = executor.block_on(f);
            ret.map_err(|e| e.into_inner().expect("unexpected execution error"))
        })
    }

    /// Run the executor to completion, blocking the thread until **all**
    /// spawned futures have completed.
    pub fn run(&mut self) -> Result<(), RunError> {
        self.enter(|executor| executor.run())
            .map_err(|e| RunError {
                inner: e,
            })
    }

    fn enter<F, R>(&mut self, f: F) -> R
    where F: FnOnce(&mut current_thread::Entered<Timer<Reactor>>) -> R
    {
        let Runtime {
            ref reactor_handle,
            ref timer_handle,
            ref clock,
            ref mut executor,
            ..
        } = *self;

        // Binds an executor to this thread
        let mut enter = tokio_executor::enter().expect("Multiple executors at once");

        // This will set the default handle and timer to use inside the closure
        // and run the future.
        tokio_reactor::with_default(&reactor_handle, &mut enter, |enter| {
            clock::with_default(clock, enter, |enter| {
                timer::with_default(&timer_handle, enter, |enter| {
                    // The TaskExecutor is a fake executor that looks into the
                    // current single-threaded executor when used. This is a trick,
                    // because we need two mutable references to the executor (one
                    // to run the provided future, another to install as the default
                    // one). We use the fake one here as the default one.
                    let mut default_executor = current_thread::TaskExecutor::current();
                    tokio_executor::with_default(&mut default_executor, enter, |enter| {
                        let mut executor = executor.enter(enter);
                        f(&mut executor)
                    })
                })
            })
        })
    }
}