1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
//! The core reactor driving all I/O.
//!
//! This module contains the [`Reactor`] reactor type which is the event loop for
//! all I/O happening in `tokio`. This core reactor (or event loop) is used to
//! drive I/O resources.
//!
//! The [`Handle`] and [`Remote`] structs are refences to the event loop,
//! created by the [`handle`][handle_method] and [`remote`][remote_method]
//! respectively, and are used to construct I/O objects. `Remote` is sendable,
//! while `Handle` is not.
//!
//! Lastly [`PollEvented`] can be used to construct I/O objects that interact
//! with the event loop, e.g. [`TcpStream`] in the net module.
//!
//! [`Reactor`]: struct.Reactor.html
//! [`Handle`]: struct.Handle.html
//! [`Remote`]: struct.Remote.html
//! [handle_method]: struct.Reactor.html#method.handle
//! [remote_method]: struct.Reactor.html#method.remote
//! [`PollEvented`]: struct.PollEvented.html
//! [`TcpStream`]: ../net/struct.TcpStream.html

use std::{fmt, usize};
use std::io::{self, ErrorKind};
use std::mem;
use std::sync::atomic::Ordering::{Relaxed, SeqCst};
use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT};
use std::sync::{Arc, Weak, RwLock};
use std::time::{Duration, Instant};

use log::Level;
use futures::task::AtomicTask;
use mio;
use mio::event::Evented;
use slab::Slab;

mod global;

mod poll_evented;
pub use self::poll_evented::PollEvented;

/// The core reactor, or event loop.
///
/// The event loop is the main source of blocking in an application which drives
/// all other I/O events and notifications happening. Each event loop can have
/// multiple handles pointing to it, each of which can then be used to create
/// various I/O objects to interact with the event loop in interesting ways.
pub struct Reactor {
    /// Reuse the `mio::Events` value across calls to poll.
    events: mio::Events,

    /// State shared between the reactor and the handles.
    inner: Arc<Inner>,

    _wakeup_registration: mio::Registration,
}

struct Inner {
    /// The underlying system event queue.
    io: mio::Poll,

    /// Dispatch slabs for I/O and futures events
    io_dispatch: RwLock<Slab<ScheduledIo>>,

    /// Used to wake up the reactor from a call to `turn`
    wakeup: mio::SetReadiness
}

/// A handle to an event loop.
///
/// A `Handle` is used for associating I/O objects with an event loop
/// explicitly. Typically though you won't end up using a `Handle` that often
/// and will instead use and implicitly configured handle for your thread.
#[derive(Clone)]
pub struct Handle {
    inner: Weak<Inner>,
}

struct ScheduledIo {
    readiness: AtomicUsize,
    reader: AtomicTask,
    writer: AtomicTask,
}

enum Direction {
    Read,
    Write,
}

const TOKEN_WAKEUP: mio::Token = mio::Token(0);
const TOKEN_START: usize = 1;

// Kind of arbitrary, but this reserves some token space for later usage.
const MAX_SOURCES: usize = usize::MAX >> 4;

fn _assert_kinds() {
    fn _assert<T: Send + Sync>() {}

    _assert::<Handle>();
}

impl Reactor {
    /// Creates a new event loop, returning any error that happened during the
    /// creation.
    pub fn new() -> io::Result<Reactor> {
        let io = mio::Poll::new()?;
        let wakeup_pair = mio::Registration::new2();

        io.register(&wakeup_pair.0,
                    TOKEN_WAKEUP,
                    mio::Ready::readable(),
                    mio::PollOpt::level())?;

        Ok(Reactor {
            events: mio::Events::with_capacity(1024),
            _wakeup_registration: wakeup_pair.0,
            inner: Arc::new(Inner {
                io: io,
                io_dispatch: RwLock::new(Slab::with_capacity(1)),
                wakeup: wakeup_pair.1,
            }),
        })
    }

    /// Returns a handle to this event loop which cannot be sent across threads
    /// but can be used as a proxy to the event loop itself.
    ///
    /// Handles are cloneable and clones always refer to the same event loop.
    /// This handle is typically passed into functions that create I/O objects
    /// to bind them to this event loop.
    pub fn handle(&self) -> Handle {
        Handle {
            inner: Arc::downgrade(&self.inner),
        }
    }

    /// Configures the fallback handle to be returned from `Handle::default`.
    ///
    /// The `Handle::default()` function will by default lazily spin up a global
    /// thread and run a reactor on this global thread. This behavior is not
    /// always desirable in all applications, however, and sometimes a different
    /// fallback reactor is desired.
    ///
    /// This function will attempt to globally alter the return value of
    /// `Handle::default()` to return the `handle` specified rather than a
    /// lazily initialized global thread. If successful then all future calls to
    /// `Handle::default()` which would otherwise fall back to the global thread
    /// will instead return a clone of the handle specified.
    ///
    /// # Errors
    ///
    /// This function may not always succeed in configuring the fallback handle.
    /// If this function was previously called (or perhaps concurrently called
    /// on many threads) only the *first* invocation of this function will
    /// succeed. All other invocations will return an error.
    ///
    /// Additionally if the global reactor thread has already been initialized
    /// then this function will also return an error. (aka if `Handle::default`
    /// has been called previously in this program).
    pub fn set_fallback(&self) -> Result<(), SetDefaultError> {
        set_fallback(self.handle())
    }

    /// Performs one iteration of the event loop, blocking on waiting for events
    /// for at most `max_wait` (forever if `None`).
    ///
    /// This method is the primary method of running this reactor and processing
    /// I/O events that occur. This method executes one iteration of an event
    /// loop, blocking at most once waiting for events to happen.
    ///
    /// If a `max_wait` is specified then the method should block no longer than
    /// the duration specified, but this shouldn't be used as a super-precise
    /// timer but rather a "ballpark approximation"
    ///
    /// # Return value
    ///
    /// This function returns an instance of `Turn`
    ///
    /// `Turn` as of today has no extra information with it and can be safely
    /// discarded.  In the future `Turn` may contain information about what
    /// happened while this reactor blocked.
    ///
    /// # Errors
    ///
    /// This function may also return any I/O error which occurs when polling
    /// for readiness of I/O objects with the OS. This is quite unlikely to
    /// arise and typically mean that things have gone horribly wrong at that
    /// point. Currently this is primarily only known to happen for internal
    /// bugs to `tokio` itself.
    pub fn turn(&mut self, max_wait: Option<Duration>) -> io::Result<Turn> {
        self.poll(max_wait)?;
        Ok(Turn { _priv: () })
    }

    fn poll(&mut self, max_wait: Option<Duration>) -> io::Result<()> {
        // Block waiting for an event to happen, peeling out how many events
        // happened.
        match self.inner.io.poll(&mut self.events, max_wait) {
            Ok(_) => {}
            Err(ref e) if e.kind() == ErrorKind::Interrupted => return Ok(()),
            Err(e) => return Err(e),
        }

        let start = if log_enabled!(Level::Debug) {
            Some(Instant::now())
        } else {
            None
        };

        // Process all the events that came in, dispatching appropriately
        let mut events = 0;
        for event in self.events.iter() {
            events += 1;
            let token = event.token();
            trace!("event {:?} {:?}", event.readiness(), event.token());

            if token == TOKEN_WAKEUP {
                self.inner.wakeup.set_readiness(mio::Ready::empty()).unwrap();
            } else {
                self.dispatch(token, event.readiness());
            }
        }

        if let Some(start) = start {
            let dur = start.elapsed();
            debug!("loop process - {} events, {}.{:03}s",
                   events,
                   dur.as_secs(),
                   dur.subsec_nanos() / 1_000_000);
        }

        Ok(())
    }

    fn dispatch(&self, token: mio::Token, ready: mio::Ready) {
        let token = usize::from(token) - TOKEN_START;
        let io_dispatch = self.inner.io_dispatch.read().unwrap();

        if let Some(io) = io_dispatch.get(token) {
            io.readiness.fetch_or(ready2usize(ready), Relaxed);
            if ready.is_writable() {
                io.writer.notify();
            }
            if !(ready & (!mio::Ready::writable())).is_empty() {
                io.reader.notify();
            }
        }
    }
}

/// Return value from the `turn` method on `Reactor`.
///
/// Currently this value doesn't actually provide any functionality, but it may
/// in the future give insight into what happened during `turn`.
#[derive(Debug)]
pub struct Turn {
    _priv: (),
}

impl fmt::Debug for Reactor {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Reactor")
    }
}

impl Drop for Inner {
    fn drop(&mut self) {
        // When a reactor is dropped it needs to wake up all blocked tasks as
        // they'll never receive a notification, and all connected I/O objects
        // will start returning errors pretty quickly.
        let io = self.io_dispatch.read().unwrap();
        for (_, io) in io.iter() {
            io.writer.notify();
            io.reader.notify();
        }
    }
}

impl Inner {
    /// Register an I/O resource with the reactor.
    ///
    /// The registration token is returned.
    fn add_source(&self, source: &Evented)
        -> io::Result<usize>
    {
        let mut io_dispatch = self.io_dispatch.write().unwrap();

        if io_dispatch.len() == MAX_SOURCES {
            return Err(io::Error::new(io::ErrorKind::Other, "reactor at max registered I/O resources"));
        }

        // Acquire a write lock
        let key = io_dispatch.insert(ScheduledIo {
            readiness: AtomicUsize::new(0),
            reader: AtomicTask::new(),
            writer: AtomicTask::new(),
        });

        try!(self.io.register(source,
                              mio::Token(TOKEN_START + key),
                              mio::Ready::readable() |
                                mio::Ready::writable() |
                                platform::all(),
                              mio::PollOpt::edge()));

        Ok(key)
    }

    fn deregister_source(&self, source: &Evented) -> io::Result<()> {
        self.io.deregister(source)
    }

    fn drop_source(&self, token: usize) {
        debug!("dropping I/O source: {}", token);
        self.io_dispatch.write().unwrap().remove(token);
    }

    /// Registers interest in the I/O resource associated with `token`.
    fn schedule(&self, token: usize, dir: Direction) {
        debug!("scheduling direction for: {}", token);
        let io_dispatch = self.io_dispatch.read().unwrap();
        let sched = io_dispatch.get(token).unwrap();

        let (task, ready) = match dir {
            Direction::Read => (&sched.reader, !mio::Ready::writable()),
            Direction::Write => (&sched.writer, mio::Ready::writable()),
        };

        task.register();

        if sched.readiness.load(SeqCst) & ready2usize(ready) != 0 {
            task.notify();
        }
    }
}

static HANDLE_FALLBACK: AtomicUsize = ATOMIC_USIZE_INIT;

/// Error returned from `Handle::set_fallback`.
#[derive(Clone, Debug)]
pub struct SetDefaultError(());

impl Handle {
    /// Forces a reactor blocked in a call to `turn` to wakeup, or otherwise
    /// makes the next call to `turn` return immediately.
    ///
    /// This method is intended to be used in situations where a notification
    /// needs to otherwise be sent to the main reactor. If the reactor is
    /// currently blocked inside of `turn` then it will wake up and soon return
    /// after this method has been called. If the reactor is not currently
    /// blocked in `turn`, then the next call to `turn` will not block and
    /// return immediately.
    fn wakeup(&self) {
        if let Some(inner) = self.inner() {
            inner.wakeup.set_readiness(mio::Ready::readable()).unwrap();
        }
    }

    fn into_usize(self) -> usize {
        unsafe {
            mem::transmute::<Weak<Inner>, usize>(self.inner)
        }
    }

    unsafe fn from_usize(val: usize) -> Handle {
        let inner = mem::transmute::<usize, Weak<Inner>>(val);;
        Handle { inner }
    }

    fn inner(&self) -> Option<Arc<Inner>> {
        self.inner.upgrade()
    }
}

impl Default for Handle {
    fn default() -> Handle {
        let mut fallback = HANDLE_FALLBACK.load(SeqCst);

        // If the fallback hasn't been previously initialized then let's spin
        // up a helper thread and try to initialize with that. If we can't
        // actually create a helper thread then we'll just return a "defunkt"
        // handle which will return errors when I/O objects are attempted to be
        // associated.
        if fallback == 0 {
            let helper = match global::HelperThread::new() {
                Ok(helper) => helper,
                Err(_) => return Handle { inner: Weak::new() },
            };

            // If we successfully set ourselves as the actual fallback then we
            // want to `forget` the helper thread to ensure that it persists
            // globally. If we fail to set ourselves as the fallback that means
            // that someone was racing with this call to `Handle::default`.
            // They ended up winning so we'll destroy our helper thread (which
            // shuts down the thread) and reload the fallback.
            if set_fallback(helper.handle().clone()).is_ok() {
                let ret = helper.handle().clone();
                helper.forget();
                return ret
            }
            fallback = HANDLE_FALLBACK.load(SeqCst);
        }

        // At this point our fallback handle global was configured so we use
        // its value to reify a handle, clone it, and then forget our reified
        // handle as we don't actually have an owning reference to it.
        assert!(fallback != 0);
        unsafe {
            let handle = Handle::from_usize(fallback);
            let ret = handle.clone();
            drop(handle.into_usize());
            return ret
        }
    }
}

impl fmt::Debug for Handle {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Handle")
    }
}

fn set_fallback(handle: Handle) -> Result<(), SetDefaultError> {
    unsafe {
        let val = handle.into_usize();
        match HANDLE_FALLBACK.compare_exchange(0, val, SeqCst, SeqCst) {
            Ok(_) => Ok(()),
            Err(_) => {
                drop(Handle::from_usize(val));
                Err(SetDefaultError(()))
            }
        }
    }
}

fn read_ready() -> mio::Ready {
    mio::Ready::readable() | platform::hup()
}

const READ: usize = 1 << 0;
const WRITE: usize = 1 << 1;

fn ready2usize(ready: mio::Ready) -> usize {
    let mut bits = 0;
    if ready.is_readable() {
        bits |= READ;
    }
    if ready.is_writable() {
        bits |= WRITE;
    }
    bits | platform::ready2usize(ready)
}

fn usize2ready(bits: usize) -> mio::Ready {
    let mut ready = mio::Ready::empty();
    if bits & READ != 0 {
        ready.insert(mio::Ready::readable());
    }
    if bits & WRITE != 0 {
        ready.insert(mio::Ready::writable());
    }
    ready | platform::usize2ready(bits)
}

#[cfg(all(unix, not(target_os = "fuchsia")))]
mod platform {
    use mio::Ready;
    use mio::unix::UnixReady;

    #[cfg(any(target_os = "dragonfly", target_os = "freebsd"))]
    pub fn all() -> Ready {
        hup() | UnixReady::aio().into()
    }

    #[cfg(not(any(target_os = "dragonfly", target_os = "freebsd")))]
    pub fn all() -> Ready {
        hup()
    }

    pub fn hup() -> Ready {
        UnixReady::hup().into()
    }

    const HUP: usize = 1 << 2;
    const ERROR: usize = 1 << 3;
    const AIO: usize = 1 << 4;

    #[cfg(any(target_os = "dragonfly", target_os = "freebsd"))]
    fn is_aio(ready: &Ready) -> bool {
        ready.is_aio()
    }

    #[cfg(not(any(target_os = "dragonfly", target_os = "freebsd")))]
    fn is_aio(_ready: &Ready) -> bool {
        false
    }

    pub fn ready2usize(ready: Ready) -> usize {
        let ready = UnixReady::from(ready);
        let mut bits = 0;
        if is_aio(&ready) {
            bits |= AIO;
        }
        if ready.is_error() {
            bits |= ERROR;
        }
        if ready.is_hup() {
            bits |= HUP;
        }
        bits
    }

    #[cfg(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios",
              target_os = "macos"))]
    fn usize2ready_aio(ready: &mut UnixReady) {
        ready.insert(UnixReady::aio());
    }

    #[cfg(not(any(target_os = "dragonfly",
        target_os = "freebsd", target_os = "ios", target_os = "macos")))]
    fn usize2ready_aio(_ready: &mut UnixReady) {
        // aio not available here → empty
    }

    pub fn usize2ready(bits: usize) -> Ready {
        let mut ready = UnixReady::from(Ready::empty());
        if bits & AIO != 0 {
            usize2ready_aio(&mut ready);
        }
        if bits & HUP != 0 {
            ready.insert(UnixReady::hup());
        }
        if bits & ERROR != 0 {
            ready.insert(UnixReady::error());
        }
        ready.into()
    }
}

#[cfg(any(windows, target_os = "fuchsia"))]
mod platform {
    use mio::Ready;

    pub fn all() -> Ready {
        // No platform-specific Readinesses for Windows
        Ready::empty()
    }

    pub fn hup() -> Ready {
        Ready::empty()
    }

    pub fn ready2usize(_r: Ready) -> usize {
        0
    }

    pub fn usize2ready(_r: usize) -> Ready {
        Ready::empty()
    }
}