1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//! Allows a future or stream to execute for a maximum amount of time.
//!
//! See [`Timeout`] documentation for more details.
//!
//! [`Timeout`]: struct.Timeout.html

use crate::clock::now;
use crate::Delay;
#[cfg(feature = "async-traits")]
use futures_core::ready;
use std::fmt;
use std::future::Future;
use std::pin::Pin;
use std::task::{self, Poll};
use std::time::{Duration, Instant};

/// Allows a `Future` or `Stream` to execute for a limited amount of time.
///
/// If the future or stream completes before the timeout has expired, then
/// `Timeout` returns the completed value. Otherwise, `Timeout` returns an
/// [`Error`].
///
/// # Futures and Streams
///
/// The exact behavor depends on if the inner value is a `Future` or a `Stream`.
/// In the case of a `Future`, `Timeout` will require the future to complete by
/// a fixed deadline. In the case of a `Stream`, `Timeout` will allow each item
/// to take the entire timeout before returning an error.
///
/// In order to set an upper bound on the processing of the *entire* stream,
/// then a timeout should be set on the future that processes the stream. For
/// example:
///
/// ```rust,no_run
/// use tokio::prelude::*;
/// use tokio::sync::mpsc;
///
/// use std::thread;
/// use std::time::Duration;
///
/// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
/// let (mut tx, rx) = mpsc::unbounded_channel();
///
/// thread::spawn(move || {
///     tx.try_send(()).unwrap();
///     thread::sleep(Duration::from_millis(10));
///     tx.try_send(()).unwrap();
/// });
///
/// let process = rx.for_each(|item| {
///     // do something with `item`
/// # drop(item);
/// # tokio::future::ready(())
/// });
///
/// // Wrap the future with a `Timeout` set to expire in 10 milliseconds.
/// process.timeout(Duration::from_millis(10)).await?;
/// # Ok(())
/// # }
/// ```
///
/// # Cancelation
///
/// Cancelling a `Timeout` is done by dropping the value. No additional cleanup
/// or other work is required.
///
/// The original future or stream may be obtained by calling [`Timeout::into_inner`]. This
/// consumes the `Timeout`.
///
/// [`Error`]: struct.Error.html
/// [`Timeout::into_inner`]: struct.Timeout.html#method.into_iter
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[derive(Debug)]
pub struct Timeout<T> {
    value: T,
    delay: Delay,
}

/// Error returned by `Timeout`.
#[derive(Debug)]
pub struct Elapsed(());

impl<T> Timeout<T> {
    /// Create a new `Timeout` that allows `value` to execute for a duration of
    /// at most `timeout`.
    ///
    /// The exact behavior depends on if `value` is a `Future` or a `Stream`.
    ///
    /// See [type] level documentation for more details.
    ///
    /// [type]: #
    ///
    /// # Examples
    ///
    /// Create a new `Timeout` set to expire in 10 milliseconds.
    ///
    /// ```rust
    /// use tokio::timer::Timeout;
    /// use tokio::sync::oneshot;
    ///
    /// use std::time::Duration;
    ///
    /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
    /// let (tx, rx) = oneshot::channel();
    /// # tx.send(()).unwrap();
    ///
    /// // Wrap the future with a `Timeout` set to expire in 10 milliseconds.
    /// Timeout::new(rx, Duration::from_millis(10)).await??;
    /// # Ok(())
    /// # }
    /// ```
    pub fn new(value: T, timeout: Duration) -> Timeout<T> {
        let delay = Delay::new_timeout(now() + timeout, timeout);
        Timeout::new_with_delay(value, delay)
    }

    pub(crate) fn new_with_delay(value: T, delay: Delay) -> Timeout<T> {
        Timeout { value, delay }
    }

    /// Gets a reference to the underlying value in this timeout.
    pub fn get_ref(&self) -> &T {
        &self.value
    }

    /// Gets a mutable reference to the underlying value in this timeout.
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.value
    }

    /// Consumes this timeout, returning the underlying value.
    pub fn into_inner(self) -> T {
        self.value
    }
}

impl<T: Future> Timeout<T> {
    /// Create a new `Timeout` that completes when `future` completes or when
    /// `deadline` is reached.
    ///
    /// This function differs from `new` in that:
    ///
    /// * It only accepts `Future` arguments.
    /// * It sets an explicit `Instant` at which the timeout expires.
    pub fn new_at(future: T, deadline: Instant) -> Timeout<T> {
        let delay = Delay::new(deadline);

        Timeout {
            value: future,
            delay,
        }
    }
}

impl<T> Future for Timeout<T>
where
    T: Future,
{
    type Output = Result<T::Output, Elapsed>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
        // First, try polling the future

        // Safety: we never move `self.value`
        unsafe {
            let p = self.as_mut().map_unchecked_mut(|me| &mut me.value);
            if let Poll::Ready(v) = p.poll(cx) {
                return Poll::Ready(Ok(v));
            }
        }

        // Now check the timer
        // Safety: X_X!
        unsafe {
            match self.map_unchecked_mut(|me| &mut me.delay).poll(cx) {
                Poll::Ready(()) => Poll::Ready(Err(Elapsed(()))),
                Poll::Pending => Poll::Pending,
            }
        }
    }
}

#[cfg(feature = "async-traits")]
impl<T> futures_core::Stream for Timeout<T>
where
    T: futures_core::Stream,
{
    type Item = Result<T::Item, Elapsed>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
        // Safety: T might be !Unpin, but we never move neither `value`
        // nor `delay`.
        //
        // ... X_X
        unsafe {
            // First, try polling the future
            let v = self
                .as_mut()
                .map_unchecked_mut(|me| &mut me.value)
                .poll_next(cx);

            if let Poll::Ready(v) = v {
                if v.is_some() {
                    self.as_mut().get_unchecked_mut().delay.reset_timeout();
                }
                return Poll::Ready(v.map(Ok));
            }

            // Now check the timer
            ready!(self.as_mut().map_unchecked_mut(|me| &mut me.delay).poll(cx));

            // if delay was ready, timeout elapsed!
            self.as_mut().get_unchecked_mut().delay.reset_timeout();
            Poll::Ready(Some(Err(Elapsed(()))))
        }
    }
}

// ===== impl Elapsed =====

impl fmt::Display for Elapsed {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        "deadline has elapsed".fmt(fmt)
    }
}

impl std::error::Error for Elapsed {}

impl From<Elapsed> for std::io::Error {
    fn from(_err: Elapsed) -> std::io::Error {
        std::io::ErrorKind::TimedOut.into()
    }
}