1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#![doc(html_root_url = "https://docs.rs/tokio-serde-json/0.3.0")]

//! `Stream` and `Sink` adaptors for serializing and deserializing values using
//! JSON.
//!
//! This crate provides adaptors for going from a stream or sink of buffers
//! ([`Bytes`]) to a stream or sink of values by performing JSON encoding or
//! decoding. It is expected that each yielded buffer contains a single
//! serialized JSON value. The specific strategy by which this is done is left
//! up to the user. One option is to use using [`length_delimited`] from
//! [tokio-io].
//!
//! # Examples
//!
//! ```no_run
//! use futures::prelude::*;
//!
//! use serde_json::json;
//!
//! use tokio::{codec::{FramedWrite, LengthDelimitedCodec}, net::TcpStream};
//!
//! use tokio_serde_json::WriteJson;
//!
//! #[tokio::main]
//! async fn main() {
//!     // Bind a server socket
//!     let socket = TcpStream::connect("127.0.0.1:17653")
//!         .await
//!         .unwrap();
//!
//!     // Delimit frames using a length header
//!     let length_delimited = FramedWrite::new(socket, LengthDelimitedCodec::new());
//!
//!     // Serialize frames with JSON
//!     let mut serialized = WriteJson::new(length_delimited);
//!
//!     // Send the value
//!     serialized.send(json!({
//!       "name": "John Doe",
//!       "age": 43,
//!       "phones": [
//!         "+44 1234567",
//!         "+44 2345678"
//!       ]
//!     })).await.unwrap()
//! }
//! ```
//!
//! For a full working server and client example, see the [examples] directory.
//!
//! [`Bytes`]: https://docs.rs/bytes/0.4/bytes/struct.Bytes.html
//! [`length_delimited`]: https://docs.rs/tokio-io/0.1/tokio_io/codec/length_delimited/index.html
//! [tokio-io]: https://github.com/tokio-rs/tokio-io
//! [examples]: https://github.com/carllerche/tokio-serde-json/tree/master/examples

use bytes::{Buf, Bytes, BytesMut, IntoBuf};
use futures::prelude::*;
use pin_project::pin_project;
use serde::{Deserialize, Serialize};
use tokio_serde::{Deserializer, FramedRead, FramedWrite, Serializer};

use std::{
    marker::PhantomData,
    pin::Pin,
    task::{Context, Poll},
};

/// Adapts a stream of JSON encoded buffers to a stream of values by
/// deserializing them.
///
/// `ReadJson` implements `Sink` by polling the inner buffer stream and
/// deserializing the buffer as JSON. It expects that each yielded buffer
/// represents a single JSON value and does not contain any extra trailing
/// bytes.
///
/// If a `ReadJson` is used concurrently from two or more threads, it is
/// guaranteed that only one object will be read at a time. In other words, once
/// an object begins being read, that object will continue being read until it
/// finishes or errors, and another object will only be read once the first
/// object completes.
#[pin_project]
pub struct ReadJson<T, U> {
    #[pin]
    inner: FramedRead<T, U, Json<U>>,
}

/// Adapts a buffer sink to a value sink by serializing the values as JSON.
///
/// `WriteJson` implements `Sink` by serializing the submitted values to a
/// buffer. The buffer is then sent to the inner stream, which is responsible
/// for handling framing on the wire.
///
/// If a `WriteJson` is used concurrently from two or more threads, it is
/// guaranteed that the bytes of different objects written will not be
/// interleaved. In other words, if two calls to `WriteJson::send` overlap, then
/// the bytes of one object will be written entirely before the bytes of the
/// other.
#[pin_project]
pub struct WriteJson<T, U> {
    #[pin]
    inner: FramedWrite<T, U, Json<U>>,
}

struct Json<T> {
    ghost: PhantomData<T>,
}

impl<T, U> ReadJson<T, U> {
    /// Creates a new `ReadJson` with the given buffer stream.
    pub fn new(inner: T) -> Self {
        let json = Json { ghost: PhantomData };
        Self {
            inner: FramedRead::new(inner, json),
        }
    }

    /// Returns a reference to the underlying stream wrapped by `ReadJson`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn get_ref(&self) -> &T {
        self.inner.get_ref()
    }

    /// Returns a mutable reference to the underlying stream wrapped by
    /// `ReadJson`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn get_mut(&mut self) -> &mut T {
        self.inner.get_mut()
    }

    /// Consumes the `ReadJson`, returning its underlying stream.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise being
    /// worked with.
    pub fn into_inner(self) -> T {
        self.inner.into_inner()
    }
}

impl<T, U> Stream for ReadJson<T, U>
where
    T: TryStream<Ok = BytesMut>,
    T::Error: From<serde_json::Error>,
    for<'a> U: Deserialize<'a>,
{
    type Item = Result<U, T::Error>;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        self.project().inner.poll_next(cx)
    }
}

impl<T, U, SinkItem> Sink<SinkItem> for ReadJson<T, U>
where
    T: Sink<SinkItem>,
{
    type Error = T::Error;

    fn poll_ready(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        self.project().inner.poll_ready(cx)
    }

    fn start_send(self: Pin<&mut Self>, item: SinkItem) -> Result<(), Self::Error> {
        self.project().inner.start_send(item)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        self.project().inner.poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        self.project().inner.poll_close(cx)
    }
}

impl<T, U> WriteJson<T, U> {
    /// Creates a new `ReadJson` with the given buffer stream.
    pub fn new(inner: T) -> Self {
        let json = Json { ghost: PhantomData };
        Self {
            inner: FramedWrite::new(inner, json),
        }
    }

    /// Returns a reference to the underlying sink wrapped by `WriteJson`.
    ///
    /// Note that care should be taken to not tamper with the underlying sink as
    /// it may corrupt the sequence of frames otherwise being worked with.
    pub fn get_ref(&self) -> &T {
        self.inner.get_ref()
    }

    /// Returns a mutable reference to the underlying sink wrapped by
    /// `WriteJson`.
    ///
    /// Note that care should be taken to not tamper with the underlying sink as
    /// it may corrupt the sequence of frames otherwise being worked with.
    pub fn get_mut(&mut self) -> &mut T {
        self.inner.get_mut()
    }

    /// Consumes the `WriteJson`, returning its underlying sink.
    ///
    /// Note that care should be taken to not tamper with the underlying sink as
    /// it may corrupt the sequence of frames otherwise being worked with.
    pub fn into_inner(self) -> T {
        self.inner.into_inner()
    }
}

impl<T, U> Stream for WriteJson<T, U>
where
    T: Stream,
{
    type Item = T::Item;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        self.project().inner.poll_next(cx)
    }
}

impl<T, U> Sink<U> for WriteJson<T, U>
where
    T: Sink<Bytes>,
    T::Error: From<serde_json::Error>,
    U: Serialize,
{
    type Error = T::Error;

    fn poll_ready(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        self.project().inner.poll_ready(cx)
    }

    fn start_send(self: Pin<&mut Self>, item: U) -> Result<(), Self::Error> {
        self.project().inner.start_send(item)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        self.project().inner.poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        self.project().inner.poll_close(cx)
    }
}

impl<T> Deserializer<T> for Json<T>
where
    for<'a> T: Deserialize<'a>,
{
    type Error = serde_json::Error;

    fn deserialize(self: Pin<&mut Self>, src: &BytesMut) -> Result<T, Self::Error> {
        serde_json::from_reader(src.into_buf().reader())
    }
}

impl<T: Serialize> Serializer<T> for Json<T> {
    type Error = serde_json::Error;

    fn serialize(self: Pin<&mut Self>, item: &T) -> Result<Bytes, Self::Error> {
        serde_json::to_vec(item).map(Into::into)
    }
}