1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
// Copyright 2017 tokio-jsonrpc Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! The [`Server`](trait.Server.html) trait and helpers.
//!
//! The `Server` trait for the use by the [`Endpoint`](../endpoint/struct.Endpoint.html) is defined
//! here. Furthermore, some helpers for convenient creation and composition of servers are
//! available. Note that not all of these helpers are necessarily zero-cost, at least at this time.

use futures::{Future, IntoFuture};
use serde::Serialize;
use serde_json::{Value, to_value};

use endpoint::ServerCtl;
use message::RpcError;

/// The server endpoint.
///
/// This is usually implemented by the end application and provides the actual functionality of the
/// RPC server. It allows composition of more servers together.
///
/// The default implementations of the callbacks return None, indicating that the given method is
/// not known. It allows implementing only RPCs or only notifications without having to worry about
/// the other callback. If you want a server that does nothing at all, use
/// [`Empty`](struct.Empty.html).
pub trait Server {
    /// The successfull result of the RPC call.
    type Success: Serialize;
    /// The result of the RPC call
    ///
    /// Once the future resolves, the value or error is sent to the client as the reply. The reply
    /// is wrapped automatically.
    type RpcCallResult: IntoFuture<Item = Self::Success, Error = RpcError> + 'static;
    /// The result of the RPC call.
    ///
    /// As the client doesn't expect anything in return, both the success and error results are
    /// thrown away and therefore (). However, it still makes sense to distinguish success and
    /// error.
    type NotificationResult: IntoFuture<Item = (), Error = ()> + 'static;
    /// Called when the client requests something.
    ///
    /// This is a callback from the [endpoint](../endpoint/struct.Endpoint.html) when the client
    /// requests something. If the method is unknown, it shall return `None`. This allows
    /// composition of servers.
    ///
    /// Conversion of parameters and handling of errors is up to the implementer of this trait.
    /// However, the [`jsonrpc_params`](../macro.jsonrpc_params.html) macro may help in that
    /// regard.
    fn rpc(&self, _ctl: &ServerCtl, _method: &str, _params: &Option<Value>)
           -> Option<Self::RpcCallResult> {
        None
    }
    /// Called when the client sends a notification.
    ///
    /// This is a callback from the [endpoint](../endpoint/struct.Endpoint.html) when the client
    /// requests something. If the method is unknown, it shall return `None`. This allows
    /// composition of servers.
    ///
    /// Conversion of parameters and handling of errors is up to the implementer of this trait.
    /// However, the [`jsonrpc_params`](../macro.jsonrpc_params.html) macro may help in that
    /// regard.
    fn notification(&self, _ctl: &ServerCtl, _method: &str, _params: &Option<Value>)
                    -> Option<Self::NotificationResult> {
        None
    }
    /// Called when the endpoint is initialized.
    ///
    /// It provides a default empty implementation, which can be overriden to hook onto the
    /// initialization.
    fn initialized(&self, _ctl: &ServerCtl) {}
}

/// A RPC server that knows no methods.
///
/// You can use this if you want to have a client-only
/// [Endpoint](../endpoint/struct.Endpoint.html). It simply terminates the server part right away.
/// Or, more conveniently, use `Endpoint`'s
/// [`client_only`](../endpoint/struct.Endpoint.html#method.client_only) method.
pub struct Empty;

impl Server for Empty {
    type Success = ();
    type RpcCallResult = Result<(), RpcError>;
    type NotificationResult = Result<(), ()>;
    fn initialized(&self, ctl: &ServerCtl) {
        ctl.terminate();
    }
}

/// An RPC server wrapper with dynamic dispatch.
///
/// This server wraps another server and converts it into a common ground, so multiple different
/// servers can be used as trait objects. Basically, it boxes the futures it returns and converts
/// the result into `serde_json::Value`. It can then be used together with
/// [`ServerChain`](struct.ServerChain.html) easilly. Note that this conversion incurs
/// runtime costs.
pub struct AbstractServer<S: Server>(S);

impl<S: Server> AbstractServer<S> {
    /// Wraps another server into an abstract server.
    pub fn new(server: S) -> Self {
        AbstractServer(server)
    }
    /// Unwraps the abstract server and provides the one inside back.
    pub fn into_inner(self) -> S {
        self.0
    }
}

/// A RPC call result wrapping trait objects.
pub type BoxRpcCallResult = Box<Future<Item = Value, Error = RpcError>>;
/// A notification call result wrapping trait objects.
pub type BoxNotificationResult = Box<Future<Item = (), Error = ()>>;

impl<S: Server> Server for AbstractServer<S> {
    type Success = Value;
    type RpcCallResult = BoxRpcCallResult;
    type NotificationResult = BoxNotificationResult;
    fn rpc(&self, ctl: &ServerCtl, method: &str, params: &Option<Value>)
           -> Option<Self::RpcCallResult> {
        self.0
            .rpc(ctl, method, params)
            .map(|f| -> Box<Future<Item = Value, Error = RpcError>> {
                let future = f.into_future()
                    .map(|result| {
                        to_value(result)
                            .expect("Your result type is not convertible to JSON, which is a bug")
                    });
                Box::new(future)
            })
    }
    fn notification(&self, ctl: &ServerCtl, method: &str, params: &Option<Value>)
                    -> Option<Self::NotificationResult> {
        // It seems the type signature is computed from inside the closure and it doesn't fit on
        // the outside, so we need to declare it manually :-(
        self.0
            .notification(ctl, method, params)
            .map(|f| -> Box<Future<Item = (), Error = ()>> { Box::new(f.into_future()) })
    }
    fn initialized(&self, ctl: &ServerCtl) {
        self.0.initialized(ctl)
    }
}

/// A type to store servers as trait objects.
///
/// See also [`AbstractServer`](struct.AbstractServer.html) and
/// [`ServerChain`](struct.ServerChain.html).
pub type BoxServer = Box<Server<Success = Value,
                                RpcCallResult = Box<Future<Item = Value, Error = RpcError>>,
                                NotificationResult = Box<Future<Item = (), Error = ()>>>>;

/// A server that chains several other servers.
///
/// This composes multiple servers into one. When a notification or an rpc comes, it tries one by
/// one and passes the call to each of them. If the server provides an answer, the iteration is
/// stopped and that answer is returned. If the server refuses the given method name, another
/// server in the chain is tried, until one is found or we run out of servers.
///
/// Initialization is called on all the servers.
///
/// The [`AbstractServer`](struct.AbstractServer.html) is one of the ways to plug servers with
/// incompatible future and success types inside.
pub struct ServerChain(Vec<BoxServer>);

impl ServerChain {
    /// Construct a new server.
    pub fn new(subservers: Vec<BoxServer>) -> Self {
        ServerChain(subservers)
    }
    /// Consume the server and return the subservers inside.
    pub fn into_inner(self) -> Vec<BoxServer> {
        self.0
    }
    /// Iterate through the servers and return the first result that is `Some(_)`.
    fn iter_chain<R, F: Fn(&BoxServer) -> Option<R>>(&self, f: F) -> Option<R> {
        for sub in &self.0 {
            let result = f(sub);
            if result.is_some() {
                return result;
            }
        }
        None
    }
}

impl Server for ServerChain {
    type Success = Value;
    type RpcCallResult = BoxRpcCallResult;
    type NotificationResult = BoxNotificationResult;
    fn rpc(&self, ctl: &ServerCtl, method: &str, params: &Option<Value>)
           -> Option<Self::RpcCallResult> {
        self.iter_chain(|sub| sub.rpc(ctl, method, params))
    }
    fn notification(&self, ctl: &ServerCtl, method: &str, params: &Option<Value>)
                    -> Option<Self::NotificationResult> {
        self.iter_chain(|sub| sub.notification(ctl, method, params))
    }
    fn initialized(&self, ctl: &ServerCtl) {
        for sub in &self.0 {
            sub.initialized(ctl);
        }
    }
}

/// Parses the parameters of an RPC or a notification.
///
/// The [`Server`](server/trait.Server.html) receives `&Option<Value>` as the parameters when its
/// `notification` or `rpc` method is called and it needs to handle it. This means checking for
/// validity and converting it to appropriate types. This is tedious.
///
/// This macro helps with that. In it's basic usage, you pass the received parameters and parameter
/// definitions for what you want and receive a tuple of converted ones. In case the parameters are
/// invalid, it returns early with an `Some(IntoFuture<_, Error = RpcError>)` directly from your
/// function (which is the return type of the callbacks).
///
/// Note that while this macro may be used directly, the macro
/// [`jsonrpc_server_impl`](macro.jsonrpc_server_impl.html) which builds the whole `Server` trait
/// implementation uses it internally and it is the preferred way to use it.
///
/// By default, it accepts both parameters passed by a name (inside a JSON object) or by position
/// (inside an array). If you insist your clients must use named or positional parameters, prefix
/// the parameter definitions by `named` or `positional` respectively. The `positional` omits the
/// parameter names in the definitions.
///
/// This also handles optional arguments in the `named` case (and when auto-detecting and a JSON
/// object is provided).
///
/// If an empty parameter definition is provided, the macro checks that no parameters were sent
/// (accepts no parameters sent, `null` sent as parameters and an empty object or array).
///
/// If a single parameter is passed, in addition to trying positional and named parameters, the
/// macro tries to convert the whole `Value` into the given type. This allows you to ask for
/// a structure that holds all the named parameters.
///
/// If you want to force the single parameter conversion of the whole `Value`, you can use the
/// macro as `jsonrpc_params!(params, single Type)`. However, in this case it returns
/// `Result<Type, RpcError>` ‒ since it is expected you might want to try both named and
/// positional decoding yourself. Also, it expects `&Value`, not `&Option<Value>`.
///
/// You can also force the macro to return the `Result<(Type, Type, ...), RpcError>` if you prefer,
/// by prefixing the parameter definitions with the `wrap` token.
///
/// The macro has other variants than the mentioned here. They are mostly used internally by the
/// macro itself and aren't meant to be used directly.
///
/// # Examples
///
/// Basic usage, parse an integer and a boolean:
///
/// ```rust
/// # #[macro_use] extern crate tokio_jsonrpc;
/// # #[macro_use] extern crate serde_json;
/// # use tokio_jsonrpc::message::RpcError;
/// # use serde_json::Value;
/// fn parse(params: &Option<Value>) -> Option<Result<(i32, bool), RpcError>> {
///     Some(Ok(jsonrpc_params!(params, "num" => i32, "b" => bool)))
/// }
///
/// # fn main() {
/// assert_eq!((42, true), parse(&Some(json!([42, true]))).unwrap().unwrap());
/// assert_eq!((42, true), parse(&Some(json!({"num": 42, "b": true}))).unwrap().unwrap());
/// parse(&None).unwrap().unwrap_err();
/// parse(&Some(json!({"num": "hello", "b": false}))).unwrap().unwrap_err();
/// // Return by the macro instead of exit
/// assert_eq!((42, true), jsonrpc_params!(&Some(json!({"num": 42, "b": true})),
///                                        wrap "num" => i32, "b" => bool).unwrap());
/// jsonrpc_params!(&None, wrap "num" => i32, "b" => bool).unwrap_err();
/// # }
/// ```
///
/// Usage with enforcing named parameters. Also, the integer is optional. Enforcing positional
/// works in a similar way, with the `positional` token.
///
/// ```rust
/// # #[macro_use] extern crate tokio_jsonrpc;
/// # #[macro_use] extern crate serde_json;
/// # use tokio_jsonrpc::message::RpcError;
/// # use serde_json::Value;
/// fn parse(params: &Option<Value>) -> Option<Result<(Option<i32>, bool), RpcError>> {
///     Some(Ok(jsonrpc_params!(params, named "num" => Option<i32>, "b" => bool)))
/// }
///
/// # fn main() {
/// parse(&Some(json!([42, true]))).unwrap().unwrap_err();
/// assert_eq!((Some(42), true), parse(&Some(json!({"num": 42, "b": true}))).unwrap().unwrap());
/// assert_eq!((None, false),
///            parse(&Some(json!({"b": false, "extra": "ignored"}))).unwrap().unwrap());
/// parse(&None).unwrap().unwrap_err();
/// parse(&Some(json!({"num": "hello", "b": false}))).unwrap().unwrap_err();
/// # }
/// ```
///
/// Enforcing positional parameters:
///
/// ```rust
/// # #[macro_use] extern crate tokio_jsonrpc;
/// # #[macro_use] extern crate serde_json;
/// # use tokio_jsonrpc::message::RpcError;
/// # use serde_json::Value;
/// fn parse(params: &Option<Value>) -> Option<Result<(i32, bool), RpcError>> {
///     Some(Ok(jsonrpc_params!(params, positional i32, bool)))
/// }
///
/// # fn main() {
/// assert_eq!((42, true), parse(&Some(json!([42, true]))).unwrap().unwrap());
/// # }
/// ```
///
/// Decoding into a structure works like this:
///
/// ```rust
/// # #[macro_use] extern crate tokio_jsonrpc;
/// # #[macro_use] extern crate serde_json;
/// # #[macro_use] extern crate serde_derive;
/// # use tokio_jsonrpc::message::RpcError;
/// # use serde_json::Value;
///
/// #[derive(PartialEq, Debug, Deserialize)]
/// struct Params {
///     num: Option<i32>,
///     b: bool,
/// }
///
/// fn parse(params: &Option<Value>) -> Option<Result<Params, RpcError>> {
///     let (params,) = jsonrpc_params!(params, "params" => Params);
///     Some(Ok(params))
/// }
///
/// # fn main() {
/// let expected = Params {
///     num: Some(42),
///     b: true,
/// };
/// let expected_optional = Params {
///     num: None,
///     b: false,
/// };
///
/// assert_eq!(expected, parse(&Some(json!([42, true]))).unwrap().unwrap());
/// assert_eq!(expected, parse(&Some(json!({"num": 42, "b": true}))).unwrap().unwrap());
/// assert_eq!(expected_optional, parse(&Some(json!({"b": false}))).unwrap().unwrap());
/// // This is accepted mostly as a side effect.
/// assert_eq!(expected, parse(&Some(json!([{"num": 42, "b": true}]))).unwrap().unwrap());
/// // As is this.
/// assert_eq!(expected, parse(&Some(json!({"params": {"num": 42, "b": true}}))).unwrap().unwrap());
/// // If you mind the above limitations, you can ask directly for a single value decoding.
/// // That returs a Result directly.
/// assert_eq!(expected,
///            jsonrpc_params!(&json!({"num": 42, "b": true}), single Params).unwrap());
/// jsonrpc_params!(&json!([{"num": 42, "b": true}]), single Params).unwrap_err();
/// # }
/// ```
#[macro_export]
macro_rules! jsonrpc_params {
    // When the user asks for no params to be present. In that case we allow no params or null or
    // empty array or dictionary, for better compatibility. This is probably more benevolent than
    // the spec allows.
    ( $value:expr, ) => {
        match *$value {
            // Accept the empty values
            None |
            Some($crate::macro_exports::Value::Null) => (),
            Some($crate::macro_exports::Value::Array(ref arr)) if arr.len() == 0 => (),
            Some($crate::macro_exports::Value::Object(ref obj)) if obj.len() == 0 => (),
            // If it's anything else, complain
            _ => {
                return Some(Err($crate::message::RpcError::
                                invalid_params(Some("Expected no params".to_owned()))).into());
            },
        }
    };
    // A convenience conversion
    ( $value:expr ) => { jsonrpc_params!($value,) };
    // An internal helper to decode a single variable and provide a Result instead of returning
    // from the function.
    ( $value:expr, single $vartype:ty ) => {{
        // Fix the type
        let val: &$crate::macro_exports::Value = $value;
        $crate::macro_exports::from_value::<$vartype>(val.clone()).map_err(|e| {
            $crate::message::RpcError::invalid_params(Some(format!("Incompatible type: {}", e)))
        })
    }};
    // A helper to count number of arguments
    ( arity $head:ty ) => { 1 };
    ( arity $head:ty, $( $tail:ty ),* ) => { 1 + jsonrpc_params!(arity $( $tail ),*) };
    // A helper to recurse on decoding of positional arguments
    ( $spl:expr, accum ( $( $result:tt )* ), positional_decode $vtype:ty ) => {
        ( $( $result )*
            {
                let spl: &[$crate::macro_exports::Value] = $spl;
                match jsonrpc_params!(&spl[0], single $vtype) {
                    Ok(result) => result,
                    Err(e) => return Some(Err(e)),
                }
            },
        )
    };
    ( $spl:expr, accum ( $( $result:tt )* ),
      positional_decode $htype:ty, $( $ttype:ty ),+ ) => {{
        let spl: &[$crate::macro_exports::Value] = $spl;
        jsonrpc_params!(&spl[1..], accum (
            $( $result )*
            {
                match jsonrpc_params!(&spl[0], single $htype) {
                    Ok(result) => result,
                    Err(e) => return Some(Err(e)),
                }
            },
        ), positional_decode $( $ttype ),+ )
    }};
    // Possibly multiple arguments, enforcing positional coding (in an array)
    // It uses recursion to count and access the items in the vector
    ( $value:expr, positional $( $vartype:ty ),+ ) => {{
        let val: &$crate::macro_exports::Option<$crate::macro_exports::Value> = $value;
        match *val {
            None => return Some(Err($crate::message::RpcError::
                                    invalid_params(Some("Expected parameters".to_owned()))).into()),
            Some($crate::macro_exports::Value::Array(ref vec)) => {
                let cnt = jsonrpc_params!(arity $( $vartype ),+);
                if cnt != vec.len() {
                    let err = format!("Wrong number of parameters: expected: {}, got: {}", cnt,
                                      vec.len());
                    return Some(Err($crate::message::RpcError::invalid_params(Some(err))).into());
                }
                let spl: &[$crate::macro_exports::Value] = &vec[..];
                jsonrpc_params!(spl, accum (), positional_decode $( $vartype ),+)
            },
            Some(_) => {
                return Some(Err($crate::message::RpcError::
                                invalid_params(Some("Expected an array as parameters".to_owned())))
                            .into());
            },
        }
    }};
    // Decode named arguments.
    // It can handle optional arguments in a way, but it has its limits (eg. a non-optional string
    // defaults to an empty one if it is missing).
    ( $value:expr, named $( $varname:expr => $vartype:ty ),+ ) => {{
        let val: &$crate::macro_exports::Option<$crate::macro_exports::Value> = $value;
        match *val {
            None => return Some(Err($crate::message::RpcError::
                                    invalid_params(Some("Expected parameters".to_owned()))).into()),
            Some($crate::macro_exports::Value::Object(ref map)) => {
                (
                    $(
                        {
                            // Yes, stupid borrow checker… can't we get a global constant that
                            // never gets dropped?
                            let null = $crate::macro_exports::Value::Null;
                            let subval = map.get($varname).unwrap_or(&null);
                            match jsonrpc_params!(subval, single $vartype) {
                                Ok(result) => result,
                                Err(e) => return Some(Err(e)),
                            }
                        },
                    )+
                )
            },
            Some(_) => {
                return Some(Err($crate::message::RpcError::
                                invalid_params(Some("Expected an object as parameters".to_owned())))
                            .into());
            },
        }
    }};
    // Decode params, decide if named or positional based on what arrived
    ( $value:expr, decide $( $varname:expr => $vartype:ty ),+ ) => {{
        let val: &$crate::macro_exports::Option<$crate::macro_exports::Value> = $value;
        match *val {
            None => return Some(Err($crate::message::RpcError::
                                    invalid_params(Some("Expected parameters".to_owned()))).into()),
            Some($crate::macro_exports::Value::Array(_)) => {
                jsonrpc_params!(val, positional $( $vartype ),+)
            },
            Some($crate::macro_exports::Value::Object(_)) => {
                jsonrpc_params!(val, named $( $varname => $vartype ),+)
            },
            Some(_) => {
                return Some(Err($crate::message::RpcError::
                                invalid_params(Some("Expected an object or an array as parameters"
                                                    .to_owned()))).into());
            },
        }
    }};
    // A special case for a single param.
    //
    // We allow decoding it directly, mostly to support users with a complex all-params structure.
    ( $value:expr, $varname:expr => $vartype:ty ) => {{
        let val: &$crate::macro_exports::Option<$crate::macro_exports::Value> = $value;
        // First try decoding directly
        let single = val.as_ref().map(|val| jsonrpc_params!(val, single $vartype));
        if let Some(Ok(result)) = single {
            (result,)
        } else {
            // If direct single decoding didn't work, try the usual multi-param way.
            jsonrpc_params!(val, decide $varname => $vartype)
        }
    }};
    // Propagate multiple params.
    ( $value:expr, $( $varname:expr => $vartype:ty ),+ ) => {
        jsonrpc_params!($value, decide $( $varname => $vartype ),+)
    };
    // Return multiple values as a result
    ( $value:expr, wrap $( $varname:expr => $vartype:ty ),+ ) => {
        {
            fn convert(params: &$crate::macro_exports::Option<$crate::macro_exports::Value>)
                       -> $crate::macro_exports::Option<
                           $crate::macro_exports::Result<($( $vartype, )+),
                                                         $crate::message::RpcError>> {
                Some(Ok(jsonrpc_params!(params, $( $varname => $vartype ),+)))
            }
            convert($value).unwrap()
        }
    };
    ( $value:expr, wrap named $( $varname:expr => $vartype:ty ),+ ) => {
        {
            fn convert(params: &$crate::macro_exports::Option<$crate::macro_exports::Value>)
                       -> $crate::macro_exports::Option<
                           $crate::macro_exports::Result<($( $vartype, )+),
                                                          $crate::message::RpcError>> {
                Some(Ok(jsonrpc_params!(params, named $( $varname => $vartype ),+)))
            }
            convert($value).unwrap()
        }
    };
    ( $value:expr, wrap positional $( $vartype:ty ),+ ) => {
        {
            fn convert(params: &$crate::macro_exports::Option<$crate::macro_exports::Value>)
                       -> $crate::macro_exports::Option<
                           $crate::macro_exports::Result<($( $vartype, )+),
                                                         $crate::message::RpcError>> {
                Some(Ok(jsonrpc_params!(params, positional $( $vartype ),+)))
            }
            convert($value).unwrap()
        }
    };
}

/*
 The intention:

 jsonrpc_server! {
    X {
        rpcs {
            hello(i: usize); // Will call x.hello(i), convert parameters, convert result…
        }
        notifications {
            hi(x: String); // Will call x.hi(…)
        }
        init // Will call x.init
    }
 }


   */

/*
trace_macros!(true);
// TODO: We want to be able to accept arrays of different kinds of data, possibly alternatives…
macro_rules! json_param {
    ( (), $value:ident ) => { () };
    ( $param:ty, $value:ident ) => {
        match *$value {
            None => unimplemented!(),
            Some(ref v) => {
                let result: Result<$param, _> = from_value(v.clone());
                match result {
                    Ok(r) => r,
                    Err(_) => unimplemented!(),
                }
            },
        }
    }
}
macro_rules! json_rpc_impl {
    ( $( $method:pat => ($param:ty) $code:block ),* ) => {
        // TODO Use $crate for the types and absolute paths for Value
        fn rpc(&self, ctl: &ServerCtl, method: &str, param: &Option<Value>) ->
        Option<Self::RpcCallResult> {
            match method {
                $( $method => {
                    let input = json_param!($param, param);
                    let result = $code;
                    let mapped = result.map(|r| to_value(r).expect("Error converting RPC result"));
                    Some(Box::new(mapped.into_future()))
                }, )*
                _ => None,
            }
        }
    };
}

    struct X;

    impl Server for X {
        type Success = Value;
        type RpcCallResult = BoxRpcCallResult;
        type NotificationResult = BoxNotificationResult;
        json_rpc_impl!{
            "test" => (usize) {
                Ok(42)
            },
            "another" => (bool) {
                Ok("Hello".to_owned())
            }
        }
    }
    */

#[cfg(test)]
mod tests {
    use std::cell::{Cell, RefCell};
    use serde_json::Map;

    use super::*;

    /// Check the empty server is somewhat sane.
    #[test]
    fn empty() {
        let server = Empty;
        let (ctl, dropped, _killed) = ServerCtl::new_test();
        // As we can't reasonably check all possible method names, do so for just a bunch
        for method in ["method", "notification", "check"].iter() {
            assert!(server.rpc(&ctl, method, &None).is_none());
            assert!(server.notification(&ctl, method, &None).is_none());
        }
        // It terminates the ctl on the server side on initialization
        server.initialized(&ctl);
        dropped.wait().unwrap();
    }

    /// A server that logs what has been called.
    #[derive(Default, Debug, PartialEq)]
    struct LogServer {
        serial: Cell<usize>,
        rpc: RefCell<Vec<usize>>,
        notification: RefCell<Vec<usize>>,
        initialized: RefCell<Vec<usize>>,
    }

    impl LogServer {
        fn update(&self, what: &RefCell<Vec<usize>>) {
            let serial = self.serial.get() + 1;
            self.serial.set(serial);
            what.borrow_mut().push(serial);
        }
    }

    impl Server for LogServer {
        type Success = bool;
        type RpcCallResult = Result<bool, RpcError>;
        type NotificationResult = Result<(), ()>;
        fn rpc(&self, _ctl: &ServerCtl, method: &str, params: &Option<Value>)
               -> Option<Self::RpcCallResult> {
            self.update(&self.rpc);
            match method {
                "test" => {
                    assert!(params.is_none());
                    Some(Ok(true))
                },
                _ => None,
            }
        }
        fn notification(&self, _ctl: &ServerCtl, method: &str, params: &Option<Value>)
                        -> Option<Self::NotificationResult> {
            self.update(&self.notification);
            assert!(params.is_none());
            match method {
                "notification" => Some(Ok(())),
                _ => None,
            }
        }
        fn initialized(&self, _ctl: &ServerCtl) {
            self.update(&self.initialized);
        }
    }

    /// Testing of the abstract server
    ///
    /// Just checking the data gets through and calling everything, there's nothing much to test
    /// anyway.
    #[test]
    fn abstract_server() {
        let log_server = LogServer::default();
        let abstract_server = AbstractServer::new(log_server);
        let (ctl, _, _) = ServerCtl::new_test();
        let rpc_result = abstract_server.rpc(&ctl, "test", &None)
            .unwrap()
            .wait()
            .unwrap();
        assert_eq!(Value::Bool(true), rpc_result);
        abstract_server.notification(&ctl, "notification", &None)
            .unwrap()
            .wait()
            .unwrap();
        assert!(abstract_server.rpc(&ctl, "another", &None).is_none());
        assert!(abstract_server.notification(&ctl, "another", &None).is_none());
        abstract_server.initialized(&ctl);
        let log_server = abstract_server.into_inner();
        let expected = LogServer {
            serial: Cell::new(5),
            rpc: RefCell::new(vec![1, 3]),
            notification: RefCell::new(vec![2, 4]),
            initialized: RefCell::new(vec![5]),
        };
        assert_eq!(expected, log_server);
    }

    struct AnotherServer;

    impl Server for AnotherServer {
        type Success = usize;
        type RpcCallResult = Result<usize, RpcError>;
        type NotificationResult = Result<(), ()>;
        fn rpc(&self, _ctl: &ServerCtl, method: &str, params: &Option<Value>)
               -> Option<Self::RpcCallResult> {
            assert!(params.as_ref()
                        .unwrap()
                        .is_null());
            match method {
                "another" => Some(Ok(42)),
                _ => None,
            }
        }
        // Ignore the other methods
    }

    /// Test the chain.
    ///
    /// By the asserts on params in the servers we check that only whan should be called is.
    #[test]
    fn chain() {
        let empty_server = Empty;
        let log_server = LogServer::default();
        let another_server = AnotherServer;
        let (ctl, dropped, _killed) = ServerCtl::new_test();
        let chain = ServerChain::new(vec![Box::new(AbstractServer::new(empty_server)),
                                          Box::new(AbstractServer::new(log_server)),
                                          Box::new(AbstractServer::new(another_server))]);
        chain.initialized(&ctl);
        dropped.wait().unwrap();
        assert_eq!(Value::Bool(true),
                   chain.rpc(&ctl, "test", &None)
                       .unwrap()
                       .wait()
                       .unwrap());
        assert_eq!(json!(42),
                   chain.rpc(&ctl, "another", &Some(Value::Null))
                       .unwrap()
                       .wait()
                       .unwrap());
        assert!(chain.rpc(&ctl, "wrong", &Some(Value::Null)).is_none());
        chain.notification(&ctl, "notification", &None)
            .unwrap()
            .wait()
            .unwrap();
        assert!(chain.notification(&ctl, "another", &None).is_none());
        // It would be great to check what is logged inside the log server. But downcasting a trait
        // object seems to be a big pain and probably isn't worth it here.
    }

    /// A guard object that panics when dropped unless it has been disarmed first.
    ///
    /// We use it to check the macro we test didn't short-circuit the test by returning early. Note
    /// that it causes a double panic if the test fails (in that case you want to temporarily
    /// remove the panic guard from that test).
    ///
    /// Most of the following tests don't need it, as they call the macro indirectly, by wrapping
    /// it into a function (and such function can't return in the caller).
    struct PanicGuard(bool);

    impl PanicGuard {
        /// A constructor. Creates an armed guerd.
        fn new() -> Self {
            PanicGuard(true)
        }
        /// Disarm the guard → it won't panic when dropped.
        fn disarm(&mut self) {
            self.0 = false;
        }
    }

    impl Drop for PanicGuard {
        fn drop(&mut self) {
            if self.0 {
                panic!("PanicGuard dropped without being disarmed");
            }
        }
    }

    /// Test the panic guard itself
    #[test]
    #[should_panic]
    fn panic_guard() {
        PanicGuard::new();
    }

    /// Expect no params and return whanever we got from the macro.
    ///
    /// It is a separate function so the return error thing from the macro doesn't end the test
    /// prematurely (actually, it wouldn't, as the return type doesn't match).
    fn expect_no_params(params: &Option<Value>) -> Option<Result<(), RpcError>> {
        // Check that we can actually assign it somewhere (this may be needed in other macros later
        // on.
        let () = jsonrpc_params!(params, );
        Some(Ok(()))
    }

    /// Test the jsonrpc_params macro when we expect no parameters.
    #[test]
    fn params_macro_none() {
        // These are legal no-params, at least for us
        expect_no_params(&None).unwrap().unwrap();
        expect_no_params(&Some(Value::Null)).unwrap().unwrap();
        expect_no_params(&Some(Value::Array(Vec::new()))).unwrap().unwrap();
        expect_no_params(&Some(Value::Object(Map::new()))).unwrap().unwrap();
        // Some illegal values
        expect_no_params(&Some(Value::Bool(true))).unwrap().unwrap_err();
        expect_no_params(&Some(json!([42, "hello"]))).unwrap().unwrap_err();
        expect_no_params(&Some(json!({"hello": 42}))).unwrap().unwrap_err();
        expect_no_params(&Some(json!(42))).unwrap().unwrap_err();
        expect_no_params(&Some(json!("hello"))).unwrap().unwrap_err();
    }

    /// Test the single-param jsonrpc_params helper variant.
    #[test]
    fn single_param() {
        let mut guard = PanicGuard::new();
        // A valid conversion
        // Make sure the return type fits
        let result: Result<bool, RpcError> = jsonrpc_params!(&Value::Bool(true), single bool);
        assert!(result.unwrap());
        // Some invalid conversions
        jsonrpc_params!(&Value::Null, single bool).unwrap_err();
        jsonrpc_params!(&Value::Array(Vec::new()), single bool).unwrap_err();
        guard.disarm();
    }

    /// A helper function to decode two values as positional arguments.
    ///
    /// This is to prevent attempt to return errors from within the test function.
    fn bool_str_positional(value: &Option<Value>) -> Option<Result<(bool, String), RpcError>> {
        let (b, s) = jsonrpc_params!(value, positional bool, String);
        Some(Ok((b, s)))
    }

    /// Like above, but with only a single variable.
    ///
    /// As single-values are handled slightly differently at a syntax level (eg, a tuple with only
    /// one element needs a terminating comma) and also differently in the macro (they are
    /// sometimes the ends of recursion), we mostly want to check it compiles.
    ///
    /// It also checks we don't get confused with an array inside the parameter array.
    fn single_positional(value: &Option<Value>) -> Option<Result<Vec<String>, RpcError>> {
        let (r,) = jsonrpc_params!(value, positional Vec<String>);
        Some(Ok(r))
    }

    /// Test decoding positional arguments.
    #[test]
    fn positional() {
        // Some that don't match
        bool_str_positional(&None).unwrap().unwrap_err();
        bool_str_positional(&Some(Value::Null)).unwrap().unwrap_err();
        bool_str_positional(&Some(Value::Bool(true))).unwrap().unwrap_err();
        bool_str_positional(&Some(json!({"b": true, "s": "hello"}))).unwrap().unwrap_err();
        bool_str_positional(&Some(json!([true]))).unwrap().unwrap_err();
        bool_str_positional(&Some(json!([true, "hello", false]))).unwrap().unwrap_err();
        bool_str_positional(&Some(json!([true, true]))).unwrap().unwrap_err();
        // This one should be fine
        assert_eq!((true, "hello".to_owned()),
                   bool_str_positional(&Some(json!([true, "hello"]))).unwrap().unwrap());

        single_positional(&None).unwrap().unwrap_err();
        // We need two nested arrays
        single_positional(&Some(json!(["Hello"]))).unwrap().unwrap_err();
        assert!(single_positional(&Some(json!([[]]))).unwrap().unwrap().is_empty());
        assert_eq!(vec!["hello", "world"],
                   single_positional(&Some(json!([["hello", "world"]]))).unwrap().unwrap());
    }

    /// Similar to `positional`, but with using the macro wrap support to return a result.
    #[test]
    fn positional_direct() {
        let mut guard = PanicGuard::new();
        jsonrpc_params!(&None, wrap positional bool, String).unwrap_err();
        jsonrpc_params!(&Some(Value::Null), wrap positional bool, String).unwrap_err();
        jsonrpc_params!(&Some(Value::Bool(true)), wrap positional bool, String).unwrap_err();
        jsonrpc_params!(&Some(json!({"b": true, "s": "hello"})), wrap positional bool, String)
            .unwrap_err();
        assert_eq!((true, "hello".to_owned()),
                   jsonrpc_params!(&Some(json!([true, "hello"])),
                                   wrap positional bool, String).unwrap());
        guard.disarm();
    }

    /// Helper function to decode two values as named arguments
    fn bool_str_named(value: &Option<Value>) -> Option<Result<(bool, String), RpcError>> {
        let (b, s) = jsonrpc_params!(value, named "b" => bool, "s" => String);
        Some(Ok((b, s)))
    }

    #[derive(Deserialize, Debug, Eq, PartialEq)]
    struct TestStruct {
        x: i32,
    }

    /// Like above, but with only one parameter.
    fn single_named(value: &Option<Value>) -> Option<Result<TestStruct, RpcError>> {
        let (ts,) = jsonrpc_params!(value, named "ts" => TestStruct);
        Some(Ok(ts))
    }

    /// Test an optional value might be missing.
    fn optional_named(value: &Option<Value>) -> Option<Result<Option<u32>, RpcError>> {
        let (ov,) = jsonrpc_params!(value, named "ov" => Option<u32>);
        Some(Ok(ov))
    }

    /// Test decoding named arguments
    #[test]
    fn named() {
        bool_str_named(&None).unwrap().unwrap_err();
        bool_str_named(&Some(Value::Null)).unwrap().unwrap_err();
        bool_str_named(&Some(Value::Bool(true))).unwrap().unwrap_err();
        bool_str_named(&Some(json!([true, "hello"]))).unwrap().unwrap_err();
        bool_str_named(&Some(json!({"b": true, "s": 42}))).unwrap().unwrap_err();
        // FIXME: This fails, as serde_json considers Value::Null to be an empty string
        //bool_str_named(&Some(json!({"b": true}))).unwrap_err();
        bool_str_named(&Some(json!({"s": "hello"}))).unwrap().unwrap_err();
        assert_eq!((true, "hello".to_owned()),
                   bool_str_named(&Some(json!({"b": true, "s": "hello"}))).unwrap().unwrap());
        // FIXME: We currently don't know how to check against extra params
        assert_eq!((true, "hello".to_owned()),
                   bool_str_named(&Some(json!({"b": true, "s": "hello", "x": 42})))
                       .unwrap()
                       .unwrap());

        single_named(&None).unwrap().unwrap_err();
        single_named(&Some(json!({"ts": 42}))).unwrap().unwrap_err();
        single_named(&Some(json!({"ts": {"x": 42}}))).unwrap().unwrap();

        optional_named(&None).unwrap().unwrap_err();
        optional_named(&Some(json!([]))).unwrap().unwrap_err();
        assert_eq!(Some(42), optional_named(&Some(json!({"ov": 42}))).unwrap().unwrap());
        assert_eq!(None, optional_named(&Some(json!({}))).unwrap().unwrap());
    }

    /// Like `named`, but using auto-wrapping support from the macro.
    #[test]
    fn named_direct() {
        let mut guard = PanicGuard::new();
        jsonrpc_params!(&None, wrap named "b" => bool, "s" => String).unwrap_err();
        jsonrpc_params!(&Some(Value::Null), wrap named "b" => bool, "s" => String).unwrap_err();
        jsonrpc_params!(&Some(Value::Bool(true)),
                        wrap named "b" => bool, "s" => String)
                .unwrap_err();
        assert_eq!((true, "hello".to_owned()),
                   jsonrpc_params!(&Some(json!({"b": true, "s": "hello"})),
                                   wrap "b" => bool, "s" => String).unwrap());
        jsonrpc_params!(&Some(json!([true, "hello"])), wrap named "b" => bool, "s" => String)
            .unwrap_err();
        guard.disarm();
    }

    /// A helper function to decode two parameters.
    ///
    /// The decoding decides how to do so based on what arrived.
    fn bool_str(value: &Option<Value>) -> Option<Result<(bool, String), RpcError>> {
        let (b, s) = jsonrpc_params!(value, "b" => bool, "s" => String);
        Some(Ok((b, s)))
    }

    /// Test decoding parameters when it decides itself how.
    #[test]
    fn decide() {
        bool_str(&None).unwrap().unwrap_err();
        bool_str(&Some(Value::Null)).unwrap().unwrap_err();
        bool_str(&Some(Value::Bool(true))).unwrap().unwrap_err();
        assert_eq!((true, "hello".to_owned()),
                   bool_str_named(&Some(json!({"b": true, "s": "hello"}))).unwrap().unwrap());
        assert_eq!((true, "hello".to_owned()),
                   bool_str_positional(&Some(json!([true, "hello"]))).unwrap().unwrap());
    }

    /// Like `decide`, but with auto-wrapping support from the macro.
    #[test]
    fn decide_direct() {
        let mut guard = PanicGuard::new();
        jsonrpc_params!(&None, wrap "b" => bool, "s" => String).unwrap_err();
        jsonrpc_params!(&Some(Value::Null), wrap "b" => bool, "s" => String).unwrap_err();
        jsonrpc_params!(&Some(Value::Bool(true)), wrap "b" => bool, "s" => String).unwrap_err();
        assert_eq!((true, "hello".to_owned()),
                   jsonrpc_params!(&Some(json!({"b": true, "s": "hello"})),
                                   wrap "b" => bool, "s" => String).unwrap());
        assert_eq!((true, "hello".to_owned()),
                   jsonrpc_params!(&Some(json!([true, "hello"])),
                                   wrap "b" => bool, "s" => String).unwrap());
        guard.disarm();
    }

    /// A helper for the `decide_single` test.
    fn decode_test_struct(value: &Option<Value>) -> Option<Result<TestStruct, RpcError>> {
        let (ts,) = jsonrpc_params!(value, "ts" => TestStruct);
        Some(Ok(ts))
    }

    /// Similar to `decide`, but with a single parameter.
    ///
    /// The single parameter is special, since it can decode the parameters structure directly.
    /// This is to support the user having an all-encompassing parameter struct (possibly with all
    /// optional/default/renaming tweaks done through fine-tuning serde).
    #[test]
    fn decide_single() {
        decode_test_struct(&None).unwrap().unwrap_err();
        decode_test_struct(&Some(Value::Null)).unwrap().unwrap_err();
        decode_test_struct(&Some(Value::Bool(true))).unwrap().unwrap_err();

        // Encoded as an array
        assert_eq!(TestStruct { x: 42 },
                   decode_test_struct(&Some(json!([{"x": 42}]))).unwrap().unwrap());
        // Encoded as an object
        assert_eq!(TestStruct { x: 42 },
                   decode_test_struct(&Some(json!({"ts": {"x": 42}}))).unwrap().unwrap());
        // Encoded directly as the parameters structure
        assert_eq!(TestStruct { x: 42 },
                   decode_test_struct(&Some(json!({"x": 42}))).unwrap().unwrap());
    }
}