1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#![allow(deprecated)]

use std::fmt;
use std::io::{self, Read};

use super::framed::Fuse;
use codec::{Decoder, Encoder};
use {AsyncRead, AsyncWrite};

use bytes::BytesMut;
use futures::{Async, AsyncSink, Poll, Sink, StartSend, Stream};

/// A `Sink` of frames encoded to an `AsyncWrite`.
pub struct FramedWrite<T, E> {
    inner: FramedWrite2<Fuse<T, E>>,
}

pub struct FramedWrite2<T> {
    inner: T,
    buffer: BytesMut,
}

const INITIAL_CAPACITY: usize = 8 * 1024;
const BACKPRESSURE_BOUNDARY: usize = INITIAL_CAPACITY;

impl<T, E> FramedWrite<T, E>
where
    T: AsyncWrite,
    E: Encoder,
{
    /// Creates a new `FramedWrite` with the given `encoder`.
    pub fn new(inner: T, encoder: E) -> FramedWrite<T, E> {
        FramedWrite {
            inner: framed_write2(Fuse(inner, encoder)),
        }
    }
}

impl<T, E> FramedWrite<T, E> {
    /// Returns a reference to the underlying I/O stream wrapped by
    /// `FramedWrite`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn get_ref(&self) -> &T {
        &self.inner.inner.0
    }

    /// Returns a mutable reference to the underlying I/O stream wrapped by
    /// `FramedWrite`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.inner.inner.0
    }

    /// Consumes the `FramedWrite`, returning its underlying I/O stream.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn into_inner(self) -> T {
        self.inner.inner.0
    }

    /// Returns a reference to the underlying decoder.
    pub fn encoder(&self) -> &E {
        &self.inner.inner.1
    }

    /// Returns a mutable reference to the underlying decoder.
    pub fn encoder_mut(&mut self) -> &mut E {
        &mut self.inner.inner.1
    }
}

impl<T, E> Sink for FramedWrite<T, E>
where
    T: AsyncWrite,
    E: Encoder,
{
    type SinkItem = E::Item;
    type SinkError = E::Error;

    fn start_send(&mut self, item: E::Item) -> StartSend<E::Item, E::Error> {
        self.inner.start_send(item)
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        self.inner.poll_complete()
    }

    fn close(&mut self) -> Poll<(), Self::SinkError> {
        Ok(try!(self.inner.close()))
    }
}

impl<T, D> Stream for FramedWrite<T, D>
where
    T: Stream,
{
    type Item = T::Item;
    type Error = T::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        self.inner.inner.0.poll()
    }
}

impl<T, U> fmt::Debug for FramedWrite<T, U>
where
    T: fmt::Debug,
    U: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("FramedWrite")
            .field("inner", &self.inner.get_ref().0)
            .field("encoder", &self.inner.get_ref().1)
            .field("buffer", &self.inner.buffer)
            .finish()
    }
}

// ===== impl FramedWrite2 =====

pub fn framed_write2<T>(inner: T) -> FramedWrite2<T> {
    FramedWrite2 {
        inner: inner,
        buffer: BytesMut::with_capacity(INITIAL_CAPACITY),
    }
}

pub fn framed_write2_with_buffer<T>(inner: T, mut buf: BytesMut) -> FramedWrite2<T> {
    if buf.capacity() < INITIAL_CAPACITY {
        let bytes_to_reserve = INITIAL_CAPACITY - buf.capacity();
        buf.reserve(bytes_to_reserve);
    }
    FramedWrite2 {
        inner: inner,
        buffer: buf,
    }
}

impl<T> FramedWrite2<T> {
    pub fn get_ref(&self) -> &T {
        &self.inner
    }

    pub fn into_inner(self) -> T {
        self.inner
    }

    pub fn into_parts(self) -> (T, BytesMut) {
        (self.inner, self.buffer)
    }

    pub fn get_mut(&mut self) -> &mut T {
        &mut self.inner
    }
}

impl<T> Sink for FramedWrite2<T>
where
    T: AsyncWrite + Encoder,
{
    type SinkItem = T::Item;
    type SinkError = T::Error;

    fn start_send(&mut self, item: T::Item) -> StartSend<T::Item, T::Error> {
        // If the buffer is already over 8KiB, then attempt to flush it. If after flushing it's
        // *still* over 8KiB, then apply backpressure (reject the send).
        if self.buffer.len() >= BACKPRESSURE_BOUNDARY {
            try!(self.poll_complete());

            if self.buffer.len() >= BACKPRESSURE_BOUNDARY {
                return Ok(AsyncSink::NotReady(item));
            }
        }

        try!(self.inner.encode(item, &mut self.buffer));

        Ok(AsyncSink::Ready)
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        trace!("flushing framed transport");

        while !self.buffer.is_empty() {
            trace!("writing; remaining={}", self.buffer.len());

            let n = try_ready!(self.inner.poll_write(&self.buffer));

            if n == 0 {
                return Err(io::Error::new(
                    io::ErrorKind::WriteZero,
                    "failed to \
                     write frame to transport",
                )
                .into());
            }

            // TODO: Add a way to `bytes` to do this w/o returning the drained
            // data.
            let _ = self.buffer.split_to(n);
        }

        // Try flushing the underlying IO
        try_ready!(self.inner.poll_flush());

        trace!("framed transport flushed");
        return Ok(Async::Ready(()));
    }

    fn close(&mut self) -> Poll<(), Self::SinkError> {
        try_ready!(self.poll_complete());
        Ok(try!(self.inner.shutdown()))
    }
}

impl<T: Decoder> Decoder for FramedWrite2<T> {
    type Item = T::Item;
    type Error = T::Error;

    fn decode(&mut self, src: &mut BytesMut) -> Result<Option<T::Item>, T::Error> {
        self.inner.decode(src)
    }

    fn decode_eof(&mut self, src: &mut BytesMut) -> Result<Option<T::Item>, T::Error> {
        self.inner.decode_eof(src)
    }
}

impl<T: Read> Read for FramedWrite2<T> {
    fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
        self.inner.read(dst)
    }
}

impl<T: AsyncRead> AsyncRead for FramedWrite2<T> {
    unsafe fn prepare_uninitialized_buffer(&self, buf: &mut [u8]) -> bool {
        self.inner.prepare_uninitialized_buffer(buf)
    }
}