1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// Copyright (c) 2018 Nuclear Furnace
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//! `tokio-evacuate` provides a way to safely "evacuate" users of a resource before forcefully
//! removing them.
//!
//! In many networked applications, there comes a time when the server must shutdown or reload, and
//! may still be actively serving traffic.  Listeners or publishers can be shut down, and remaining
//! work can be processed while no new work is allowed.. but this may take longer than the operator
//! is comfortable with.
//!
//! `Evacuate` is a middleware future, that works in conjuction with a classic "shutdown signal."
//! By combining a way to track the number of current users, as well as a way to fire a global
//! timeout, we allow applications to provide soft shutdown capabilities, giving work a chance to
//! complete, before forcefully stopping computation.
#[macro_use]
extern crate futures;
extern crate tokio_timer;

#[cfg(test)]
extern crate tokio_executor;

use futures::{
    future::Fuse,
    prelude::*,
    sync::mpsc::{unbounded, UnboundedReceiver, UnboundedSender},
};
use std::time::Duration;
use tokio_timer::{clock::now as clock_now, Delay};

/// Dispatcher for user count updates.
///
/// [`Warden`] is cloneable.
#[derive(Clone)]
pub struct Warden {
    pub(crate) notify_tx: UnboundedSender<bool>,
}

/// A future for safely "evacuating" a resource that is used by multiple parties.
///
/// [`Evacuate`] tracks a tripwire, the count of concurrent users, and an evacuation timeout, and
/// functions in a two-step process: we must be tripped, and then we race to the timeout.
///
/// Until the tripwire completes, [`Evacuate`] will always return `Async::NotReady`.  Once we detect
/// that the tripwire has completed, however, we immediately spawn a timeout, based on the
/// configured value, and race between the user count dropping to zero and the timeout firing.
///
/// The user count is updated by calls to [`Warden::increment`] and [`Warden::decrement`].
pub struct Evacuate<F: Future> {
    count: u64,
    notify_rx: UnboundedReceiver<bool>,
    tripwire: Fuse<F>,
    timeout_ms: u64,
    timeout: Delay,
}

impl Warden {
    /// Increments the user count.
    pub fn increment(&self) { let _ = self.notify_tx.unbounded_send(true); }

    /// Decrements the user count.
    pub fn decrement(&self) { let _ = self.notify_tx.unbounded_send(false); }
}

impl<F: Future> Evacuate<F> {
    /// Creates a new [`Evacuate`].
    ///
    /// The given `tripwire` is used, and the internal timeout is set to the value of `timeout_ms`.
    ///
    /// Returns both a [`Warden`] handle, used for incrementing and decrementing the user count, and
    /// [`Evacuate`] itself.
    pub fn new(tripwire: F, timeout_ms: u64) -> (Warden, Evacuate<F>) {
        let (notify_tx, notify_rx) = unbounded();

        let warden = Warden { notify_tx };
        let evacuate = Evacuate {
            count: 0,
            notify_rx,
            tripwire: tripwire.fuse(),
            timeout_ms,
            timeout: Delay::new(clock_now()),
        };

        (warden, evacuate)
    }
}

impl<F: Future> Future for Evacuate<F> {
    type Error = ();
    type Item = ();

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        // Drain the notifications queue to make sure we keep getting notified.
        while let Ok(Async::Ready(Some(state))) = self.notify_rx.poll() {
            if state {
                self.count += 1;
            } else {
                self.count -= 1;
            }
        }

        // We have to wait for our tripwire.
        if !self.tripwire.is_done() {
            let _ = try_ready!(self.tripwire.poll().map_err(|_| ()));

            // If we're here, reset our delay based on the timeout.
            self.timeout.reset(clock_now() + Duration::from_millis(self.timeout_ms));
        }

        // We've tripped, so let's see what we're at for count.  If we're at zero, then we're done,
        // otherwise, fall through and see if we've hit our delay yet.
        if self.count == 0 {
            // We've tripped and we're at count 0, so we're done.
            return Ok(Async::Ready(()));
        }

        // Our count isn't at zero, but let's see if we've timed out yet.
        self.timeout.poll().map_err(|_| ())
    }
}

#[cfg(test)]
mod tests {
    extern crate tokio_executor;

    #[macro_use]
    mod support;
    use self::support::*;

    use super::Evacuate;

    use futures::{
        future::{empty, ok},
        Future,
    };

    #[test]
    fn test_evacuate_stops_at_tripwire() {
        mocked(|_, _| {
            let tripwire = empty::<(), ()>();
            let (_warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            assert_not_ready!(evacuate);
        });
    }

    #[test]
    fn test_evacuate_falls_through_on_tripwire() {
        mocked(|_, _| {
            let tripwire = ok::<(), ()>(());
            let (_warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            assert_ready!(evacuate);
        });
    }

    #[test]
    fn test_evacuate_stops_after_tripping_with_clients() {
        mocked(|_, _| {
            let tripwire = ok::<(), ()>(());
            let (warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            warden.increment();
            assert_not_ready!(evacuate);
        });
    }

    #[test]
    fn test_evacuate_completes_after_client_count_ping_pong() {
        mocked(|_, _| {
            let tripwire = ok::<(), ()>(());
            let (warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            warden.increment();
            assert_not_ready!(evacuate);
            warden.increment();
            assert_not_ready!(evacuate);
            warden.decrement();
            warden.decrement();
            assert_ready!(evacuate);
        });
    }

    #[test]
    fn test_evacuate_delay_before_clients_hit_zero() {
        mocked(|timer, _| {
            let tripwire = ok::<(), ()>(());
            let (warden, mut evacuate) = Evacuate::new(tripwire, 10000);
            warden.increment();
            assert_not_ready!(evacuate);
            warden.increment();
            assert_not_ready!(evacuate);
            warden.decrement();
            assert_not_ready!(evacuate);
            advance(timer, ms(10001));
            assert_ready!(evacuate);
        });
    }

}