1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
//! Tiny OBJ loader, inspired by Syoyo's excellent [tinyobjloader](https://github.com/syoyo/tinyobjloader).
//! Aims to be a simple and lightweight option for loading OBJ files, just returns two vecs
//! containing loaded models and materials. All models are made of triangles, any quad or polygon faces
//! in an OBJ file will be converted to triangles. Note that only polygons that are trivially
//! convertible to triangle fans are supported, arbitrary polygons may not behave as expected.
//! The best solution would be to re-export your mesh using only triangles in your modeling software.
//!
//! It is assumed that all meshes will at least have positions, but normals and texture coordinates
//! are optional. If no normals or texture coordinates were found then the corresponding vecs for
//! the mesh will be empty. Values are stored packed as floats in vecs, eg. the positions member of
//! a loaded mesh will contain `[x, y, z, x, y, z, ...]` which you can then use however you like.
//! Indices are also loaded and may re-use vertices already existing in the mesh, this data is
//! stored in the `indices` member.
//!
//! Standard MTL attributes are supported as well and any unrecognized parameters will be stored in a
//! `HashMap` containing the key-value pairs of the unrecognized parameter and its value.
//!
//! # Example
//! In this simple example we load the classic Cornell Box model that only defines positions and
//! print out its attributes. This example is a slightly trimmed down version of `print_model_info`
//! and `print_material_info` combined together, see them for a version that also prints out
//! normals and texture coordinates if the model has them.
//!
//! ```
//! use tobj;
//!
//! let cornell_box = tobj::load_obj("cornell_box.obj", true);
//! assert!(cornell_box.is_ok());
//! let (models, materials) = cornell_box.unwrap();
//!
//! println!("# of models: {}", models.len());
//! println!("# of materials: {}", materials.len());
//! for (i, m) in models.iter().enumerate() {
//!     let mesh = &m.mesh;
//!     println!("model[{}].name = \'{}\'", i, m.name);
//!     println!("model[{}].mesh.material_id = {:?}", i, mesh.material_id);
//!
//!     println!("Size of model[{}].num_face_indices: {}", i, mesh.num_face_indices.len());
//!     let mut next_face = 0;
//!     for f in 0..mesh.num_face_indices.len() {
//!         let end = next_face + mesh.num_face_indices[f] as usize;
//!         let face_indices: Vec<_> = mesh.indices[next_face..end].iter().collect();
//!         println!("    face[{}] = {:?}", f, face_indices);
//!         next_face = end;
//!     }
//!
//!     // Normals and texture coordinates are also loaded, but not printed in this example
//!     println!("model[{}].vertices: {}", i, mesh.positions.len() / 3);
//!     assert!(mesh.positions.len() % 3 == 0);
//!     for v in 0..mesh.positions.len() / 3 {
//!         println!("    v[{}] = ({}, {}, {})", v, mesh.positions[3 * v],
//!         mesh.positions[3 * v + 1], mesh.positions[3 * v + 2]);
//!     }
//! }
//!
//! for (i, m) in materials.iter().enumerate() {
//!     println!("material[{}].name = \'{}\'", i, m.name);
//!     println!("    material.Ka = ({}, {}, {})", m.ambient[0], m.ambient[1],
//!     m.ambient[2]);
//!     println!("    material.Kd = ({}, {}, {})", m.diffuse[0], m.diffuse[1],
//!     m.diffuse[2]);
//!     println!("    material.Ks = ({}, {}, {})", m.specular[0], m.specular[1],
//!     m.specular[2]);
//!     println!("    material.Ns = {}", m.shininess);
//!     println!("    material.d = {}", m.dissolve);
//!     println!("    material.map_Ka = {}", m.ambient_texture);
//!     println!("    material.map_Kd = {}", m.diffuse_texture);
//!     println!("    material.map_Ks = {}", m.specular_texture);
//!     println!("    material.map_Ns = {}", m.shininess_texture);
//!     println!("    material.map_Bump = {}", m.normal_texture);
//!     println!("    material.map_d = {}", m.dissolve_texture);
//!     for (k, v) in &m.unknown_param {
//!         println!("    material.{} = {}", k, v);
//!     }
//! }
//! ```
//!
//! # Rendering Examples
//! For an example of integration with [glium](https://github.com/tomaka/glium) to make a simple OBJ viewer,
//! check out [tobj viewer](https://github.com/Twinklebear/tobj_viewer). Some sample images can be found in
//! tobj viewer's readme or in [this gallery](http://imgur.com/a/xsg6v).
//!
//! The Rungholt model shown below is reasonably large (6.7M triangles, 12.3M vertices) and is loaded
//! in ~7.47s using a peak of ~1.1GB of memory on a Windows 10 machine with an i7-4790k and 16GB of
//! 1600Mhz DDR3 RAM with tobj 0.1.1 on rustc 1.6.0.
//! The model can be found on [Morgan McGuire's](http://graphics.cs.williams.edu/data/meshes.xml) meshes page and
//! was originally built by kescha. Future work will focus on improving performance and memory usage.
//!
//! <img src="http://i.imgur.com/wImyNG4.png" alt="Rungholt"
//!     style="display:block; max-width:100%; height:auto">
//!
//! For an example of integration within a ray tracer, check out tray\_rust's
//! [mesh module](https://github.com/Twinklebear/tray_rust/blob/master/src/geometry/mesh.rs).
//! The Stanford Buddha and Dragon from the
//! [Stanford 3D Scanning Repository](http://graphics.stanford.edu/data/3Dscanrep/) both load quite quickly.
//! The Rust logo model was made by
//! [Nylithius on BlenderArtists](http://blenderartists.org/forum/showthread.php?362836-Rust-language-3D-logo).
//! The materials used are from the [MERL BRDF Database](http://www.merl.com/brdf/).
//!
//! <img src="http://i.imgur.com/E1ylrZW.png" alt="Rust logo with friends"
//!     style="display:block; max-width:100%; height:auto">
//!

#![allow(dead_code)]
#![cfg_attr(all(test, feature = "unstable"), feature(test))]
#![cfg_attr(feature = "unstable", feature(plugin))]
#![cfg_attr(feature = "unstable", plugin(clippy))]

#[cfg(all(test, feature = "unstable"))]
extern crate test;

use std::collections::HashMap;
use std::error::Error;
use std::fmt;
use std::fs::File;
use std::io::prelude::*;
use std::io::BufReader;
use std::path::Path;
use std::str::{FromStr, SplitWhitespace};

/// A mesh made up of triangles loaded from some OBJ file
///
/// It is assumed that all meshes will at least have positions, but normals and texture coordinates
/// are optional. If no normals or texture coordinates where found then the corresponding vecs for
/// the mesh will be empty. Values are stored packed as floats in vecs, eg. the positions member of
/// a loaded mesh will contain `[x, y, z, x, y, z, ...]` which you can then use however you like.
/// Indices are also loaded and may re-use vertices already existing in the mesh, this data is
/// stored in the `indices` member.
///
/// # Example:
/// Load the Cornell box and get the attributes of the first vertex. It's assumed all meshes will
/// have positions (required), but normals and texture coordinates are optional, in which case the
/// corresponding Vec will be empty.
///
/// ```
/// let cornell_box = tobj::load_obj("cornell_box.obj", true);
/// assert!(cornell_box.is_ok());
/// let (models, materials) = cornell_box.unwrap();
///
/// let mesh = &models[0].mesh;
/// let i = mesh.indices[0] as usize;
/// // pos = [x, y, z]
/// let pos = [mesh.positions[i * 3], mesh.positions[i * 3 + 1],
///             mesh.positions[i * 3 + 2]];
///
/// if !mesh.normals.is_empty() {
///     // normal = [x, y, z]
///     let normal = [mesh.normals[i * 3], mesh.normals[i * 3 + 1],
///                   mesh.normals[i * 3 + 2]];
/// }
///
/// if !mesh.texcoords.is_empty() {
///     // texcoord = [u, v];
///     let texcoord = [mesh.texcoords[i * 2], mesh.texcoords[i * 2 + 1]];
/// }
/// ```
#[derive(Debug, Clone)]
pub struct Mesh {
    /// Flattened 3 component floating point vectors, storing positions of vertices in the mesh
    pub positions: Vec<f32>,
    /// Flattened 3 component floating point vectors, storing normals of vertices in the mesh. Not
    /// all meshes have normals, if no normals are specified this Vec will be empty
    pub normals: Vec<f32>,
    /// Flattened 2 component floating point vectors, storing texture coordinates of vertices in
    /// the mesh. Not all meshes have normals, if no texture coordinates are specified this Vec
    /// will be empty
    pub texcoords: Vec<f32>,
    /// Indices for vertices of each triangle. If loaded with `triangulate_faces`, each face in the
    /// mesh is a triangle, otherwise the `num_face_indices` vector indicates how many indices
    /// are used by each face. The indices specify the position, normal and texture coordinate
    /// for each vertex of the face.
    pub indices: Vec<u32>,
    /// The number of vertices used by each face. When using non-triangulated faces, the offset
    /// for the starting index of a face can be found by iterating through the `num_face_indices`
    /// until reaching the desired face, accumulating the number of vertices used so far.
    pub num_face_indices: Vec<u32>,
    /// Optional material id associated with this mesh. The material id indexes into the Vec of
    /// Materials loaded from the associated MTL file
    pub material_id: Option<usize>,
}

impl Mesh {
    /// Create a new empty mesh
    pub fn empty() -> Mesh {
        Mesh {
            positions: Vec::new(),
            normals: Vec::new(),
            texcoords: Vec::new(),
            indices: Vec::new(),
            num_face_indices: Vec::new(),
            material_id: None,
        }
    }
}

/// A named model within the file, associates some mesh with a name that was specified with an `o`
/// or `g` keyword in the OBJ file
#[derive(Clone, Debug)]
pub struct Model {
    /// Mesh used by the model containing its geometry
    pub mesh: Mesh,
    /// Name assigned to this mesh
    pub name: String,
}

impl Model {
    /// Create a new model, associating a name with a mesh
    pub fn new(mesh: Mesh, name: String) -> Model {
        Model { mesh, name }
    }
}

/// A material that may be referenced by one or more meshes. Standard MTL attributes are supported.
/// Any unrecognized parameters will be stored as key-value pairs in the `unknown_param` `HashMap`,
/// which maps the unknown parameter to the value set for it.
#[derive(Clone, Debug)]
pub struct Material {
    /// Material name as specified in the MTL file
    pub name: String,
    /// Ambient color of the material
    pub ambient: [f32; 3],
    /// Diffuse color of the material
    pub diffuse: [f32; 3],
    /// Specular color of the material
    pub specular: [f32; 3],
    /// Material shininess attribute
    pub shininess: f32,
    /// Dissolve attribute is the alpha term for the material. Referred to as dissolve since that's
    /// what the MTL file format docs refer to it as
    pub dissolve: f32,
    /// Optical density also known as index of refraction. Called optical_density in the MTL specc.
    /// Takes on a value between 0.001 and 10.0. 1.0 means light does not bend as it passed through
    /// the object.
    pub optical_density: f32,
    /// Name of the ambient texture file for the material. No path is pre-pended to the texture
    /// file names specified in the MTL file
    pub ambient_texture: String,
    /// Name of the diffuse texture file for the material. No path is pre-pended to the texture
    /// file names specified in the MTL file
    pub diffuse_texture: String,
    /// Name of the specular texture file for the material. No path is pre-pended to the texture
    /// file names specified in the MTL file
    pub specular_texture: String,
    /// Name of the normal map texture file for the material. No path is pre-pended to the texture
    /// file names specified in the MTL file
    pub normal_texture: String,
    /// Name of the shininess map texture file for the material. No path is pre-pended to the texture
    /// file names specified in the MTL file
    pub shininess_texture: String,
    /// Name of the alpha map texture file for the material. No path is pre-pended to the texture
    /// file names specified in the MTL file. Referred to as dissolve to match the MTL file format
    /// specification
    pub dissolve_texture: String,
    /// The illumnination model to use for this material. The different illumnination models are
    /// specified in http://paulbourke.net/dataformats/mtl/
    pub illumination_model: Option<u8>,
    /// Key value pairs of any unrecognized parameters encountered while parsing the material
    pub unknown_param: HashMap<String, String>,
}

impl Material {
    pub fn empty() -> Material {
        Material {
            name: String::new(),
            ambient: [0.0; 3],
            diffuse: [0.0; 3],
            specular: [0.0; 3],
            shininess: 0.0,
            dissolve: 1.0,
            optical_density: 1.0,
            ambient_texture: String::new(),
            diffuse_texture: String::new(),
            specular_texture: String::new(),
            normal_texture: String::new(),
            shininess_texture: String::new(),
            dissolve_texture: String::new(),
            illumination_model: None,
            unknown_param: HashMap::new(),
        }
    }
}

/// Possible errors that may occur while loading OBJ and MTL files
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum LoadError {
    OpenFileFailed,
    ReadError,
    UnrecognizedCharacter,
    PositionParseError,
    NormalParseError,
    TexcoordParseError,
    FaceParseError,
    MaterialParseError,
    InvalidObjectName,
    FaceVertexOutOfBounds,
    FaceTexCoordOutOfBounds,
    FaceNormalOutOfBounds,
    GenericFailure,
}

impl fmt::Display for LoadError {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        let msg = match *self {
            LoadError::OpenFileFailed => "open file failed",
            LoadError::ReadError => "read error",
            LoadError::UnrecognizedCharacter => "unrecognized character",
            LoadError::PositionParseError => "position parse error",
            LoadError::NormalParseError => "normal parse error",
            LoadError::TexcoordParseError => "texcoord parse error",
            LoadError::FaceParseError => "face parse error",
            LoadError::MaterialParseError => "material parse error",
            LoadError::InvalidObjectName => "invalid object name",
            LoadError::FaceVertexOutOfBounds => "face vertex index out of bounds",
            LoadError::FaceTexCoordOutOfBounds => "face texcoord index out of bounds",
            LoadError::FaceNormalOutOfBounds => "face normal index out of bounds",
            LoadError::GenericFailure => "generic failure",
        };

        f.write_str(msg)
    }
}

impl Error for LoadError {}

/// `LoadResult` is a result containing all the models loaded from the file and any materials from
/// referenced material libraries, or an error that occured while loading
pub type LoadResult = Result<(Vec<Model>, Vec<Material>), LoadError>;

/// `MTLLoadResult` is a result containing all the materials loaded from the file and a map of MTL
/// name to index or the error that occured while loading
pub type MTLLoadResult = Result<(Vec<Material>, HashMap<String, usize>), LoadError>;

/// Struct storing indices corresponding to the vertex
/// Some vertices may not have texcoords or normals, 0 is used to indicate this
/// as OBJ indices begin at 1
#[derive(Hash, Eq, PartialEq, PartialOrd, Ord, Debug, Copy, Clone)]
struct VertexIndices {
    pub v: isize,
    pub vt: isize,
    pub vn: isize,
}

impl VertexIndices {
    /// Parse the vertex indices from the face string
    /// Valid face strings are those that are valid for a Wavefront OBJ file
    /// Also handles relative face indices (negative values) which is why passing the number of
    /// positions, texcoords and normals is required
    /// Returns None if the face string is invalid
    fn parse(
        face_str: &str,
        pos_sz: usize,
        tex_sz: usize,
        norm_sz: usize,
    ) -> Option<VertexIndices> {
        let mut indices = [-1; 3];
        for i in face_str.split('/').enumerate() {
            // Catch case of v//vn where we'll find an empty string in one of our splits
            // since there are no texcoords for the mesh
            if !i.1.is_empty() {
                match isize::from_str(i.1) {
                    Ok(x) => {
                        // Handle relative indices
                        indices[i.0] = if x < 0 {
                            match i.0 {
                                0 => x + pos_sz as isize,
                                1 => x + tex_sz as isize,
                                2 => x + norm_sz as isize,
                                _ => panic!("Invalid number of elements for a face (> 3)!"),
                            }
                        } else {
                            x - 1
                        };
                    }
                    Err(_) => return None,
                }
            }
        }
        Some(VertexIndices {
            v: indices[0],
            vt: indices[1],
            vn: indices[2],
        })
    }
}

/// Enum representing either a quad or triangle face, storing indices for the face vertices
#[derive(Debug)]
enum Face {
    Line(VertexIndices, VertexIndices),
    Triangle(VertexIndices, VertexIndices, VertexIndices),
    Quad(VertexIndices, VertexIndices, VertexIndices, VertexIndices),
    Polygon(Vec<VertexIndices>),
}

/// Parse the floatn information from the words, words is an iterator over the float strings
/// Returns false if parsing failed
fn parse_floatn(val_str: SplitWhitespace, vals: &mut Vec<f32>, n: usize) -> bool {
    let sz = vals.len();
    for p in val_str {
        if sz + n == vals.len() {
            return true;
        }
        match FromStr::from_str(p) {
            Ok(x) => vals.push(x),
            Err(_) => return false,
        }
    }
    // Require that we found the desired number of floats
    sz + n == vals.len()
}

/// Parse the float3 into the array passed, returns false if parsing failed
fn parse_float3(val_str: SplitWhitespace, vals: &mut [f32; 3]) -> bool {
    for (i, p) in val_str.enumerate().take(3) {
        match FromStr::from_str(p) {
            Ok(x) => vals[i] = x,
            Err(_) => return false,
        }
    }
    true
}

/// Parse vertex indices for a face and append it to the list of faces passed
/// Also handles relative face indices (negative values) which is why passing the number of
/// positions, texcoords and normals is required
/// returns false if an error occured parsing the face
fn parse_face(
    face_str: SplitWhitespace,
    faces: &mut Vec<Face>,
    pos_sz: usize,
    tex_sz: usize,
    norm_sz: usize,
) -> bool {
    let mut indices = Vec::new();
    for f in face_str {
        match VertexIndices::parse(f, pos_sz, tex_sz, norm_sz) {
            Some(v) => indices.push(v),
            None => return false,
        }
    }
    // Check if we read a triangle or a quad face and push it on
    match indices.len() {
        2 => faces.push(Face::Line(indices[0], indices[1])),
        3 => faces.push(Face::Triangle(indices[0], indices[1], indices[2])),
        4 => faces.push(Face::Quad(indices[0], indices[1], indices[2], indices[3])),
        _ => faces.push(Face::Polygon(indices)),
    }
    true
}

/// Add a vertex to a mesh by either re-using an existing index (eg. it's in the `index_map`)
/// or appending the position, texcoord and normal as appropriate and creating a new vertex
fn add_vertex(
    mesh: &mut Mesh,
    index_map: &mut HashMap<VertexIndices, u32>,
    vert: &VertexIndices,
    pos: &[f32],
    texcoord: &[f32],
    normal: &[f32],
) -> Result<(), LoadError> {
    match index_map.get(vert) {
        Some(&i) => mesh.indices.push(i),
        None => {
            let v = vert.v as usize;
            if v * 3 + 2 >= pos.len() {
                return Err(LoadError::FaceVertexOutOfBounds);
            }
            // Add the vertex to the mesh
            mesh.positions.push(pos[v * 3]);
            mesh.positions.push(pos[v * 3 + 1]);
            mesh.positions.push(pos[v * 3 + 2]);
            if !texcoord.is_empty() && vert.vt > -1 {
                let vt = vert.vt as usize;
                if vt * 2 + 1 >= texcoord.len() {
                    return Err(LoadError::FaceTexCoordOutOfBounds);
                }
                mesh.texcoords.push(texcoord[vt * 2]);
                mesh.texcoords.push(texcoord[vt * 2 + 1]);
            }
            if !normal.is_empty() && vert.vn > -1 {
                let vn = vert.vn as usize;
                if vn * 3 + 2 >= normal.len() {
                    return Err(LoadError::FaceNormalOutOfBounds);
                }
                mesh.normals.push(normal[vn * 3]);
                mesh.normals.push(normal[vn * 3 + 1]);
                mesh.normals.push(normal[vn * 3 + 2]);
            }
            let next = index_map.len() as u32;
            mesh.indices.push(next);
            index_map.insert(*vert, next);
        }
    }
    Ok(())
}

/// Export a list of faces to a mesh and return it, converting quads to tris
fn export_faces(
    pos: &[f32],
    texcoord: &[f32],
    normal: &[f32],
    faces: &[Face],
    mat_id: Option<usize>,
    triangulate_faces: bool,
) -> Result<Mesh, LoadError> {
    let mut index_map = HashMap::new();
    let mut mesh = Mesh::empty();
    mesh.material_id = mat_id;
    for f in faces {
        // Optimized paths for Triangles and Quads, Polygon handles the general case of an unknown
        // length triangle fan
        match *f {
            Face::Line(ref a, ref b) => {
                add_vertex(&mut mesh, &mut index_map, a, pos, texcoord, normal)?;
                add_vertex(&mut mesh, &mut index_map, b, pos, texcoord, normal)?;
                mesh.num_face_indices.push(2);
            }
            Face::Triangle(ref a, ref b, ref c) => {
                add_vertex(&mut mesh, &mut index_map, a, pos, texcoord, normal)?;
                add_vertex(&mut mesh, &mut index_map, b, pos, texcoord, normal)?;
                add_vertex(&mut mesh, &mut index_map, c, pos, texcoord, normal)?;
                mesh.num_face_indices.push(3);
            }
            Face::Quad(ref a, ref b, ref c, ref d) => {
                if triangulate_faces {
                    add_vertex(&mut mesh, &mut index_map, a, pos, texcoord, normal)?;
                    add_vertex(&mut mesh, &mut index_map, b, pos, texcoord, normal)?;
                    add_vertex(&mut mesh, &mut index_map, c, pos, texcoord, normal)?;
                    mesh.num_face_indices.push(3);

                    add_vertex(&mut mesh, &mut index_map, a, pos, texcoord, normal)?;
                    add_vertex(&mut mesh, &mut index_map, c, pos, texcoord, normal)?;
                    add_vertex(&mut mesh, &mut index_map, d, pos, texcoord, normal)?;
                    mesh.num_face_indices.push(3);
                } else {
                    add_vertex(&mut mesh, &mut index_map, a, pos, texcoord, normal)?;
                    add_vertex(&mut mesh, &mut index_map, b, pos, texcoord, normal)?;
                    add_vertex(&mut mesh, &mut index_map, c, pos, texcoord, normal)?;
                    add_vertex(&mut mesh, &mut index_map, d, pos, texcoord, normal)?;
                    mesh.num_face_indices.push(4);
                }
            }
            Face::Polygon(ref indices) => {
                if triangulate_faces {
                    let a = &indices[0];
                    let mut b = &indices[1];
                    for c in indices.iter().skip(2) {
                        add_vertex(&mut mesh, &mut index_map, a, pos, texcoord, normal)?;
                        add_vertex(&mut mesh, &mut index_map, b, pos, texcoord, normal)?;
                        add_vertex(&mut mesh, &mut index_map, c, pos, texcoord, normal)?;
                        mesh.num_face_indices.push(3);
                        b = c;
                    }
                } else {
                    for i in indices.iter() {
                        add_vertex(&mut mesh, &mut index_map, i, pos, texcoord, normal)?;
                    }
                    mesh.num_face_indices.push(indices.len() as u32);
                }
            }
        }
    }
    Ok(mesh)
}

/// Load the various objects specified in the OBJ file and any associated MTL file
/// Returns a pair of Vecs containing the loaded models and materials from the file.
pub fn load_obj<P>(file_name: P, triangulate_faces: bool) -> LoadResult
where
    P: AsRef<Path> + fmt::Debug,
{
    let file = match File::open(file_name.as_ref()) {
        Ok(f) => f,
        Err(_e) => {
            #[cfg(feature = "log")]
            log::error!("load_obj - failed to open {:?} due to {}", file_name, _e);
            return Err(LoadError::OpenFileFailed);
        }
    };
    let mut reader = BufReader::new(file);
    load_obj_buf(&mut reader, triangulate_faces, |mat_path| {
        let full_path = if let Some(parent) = file_name.as_ref().parent() {
            parent.join(mat_path)
        } else {
            mat_path.to_owned()
        };

        self::load_mtl(&full_path)
    })
}

/// Load the materials defined in a MTL file
/// Returns a pair with a `Vec` holding all loaded materials and a `HashMap` containing a mapping of
/// material names to indices in the Vec.
pub fn load_mtl<P>(file_name: P) -> MTLLoadResult
where
    P: AsRef<Path> + fmt::Debug,
{
    let file = match File::open(file_name.as_ref()) {
        Ok(f) => f,
        Err(_e) => {
            #[cfg(feature = "log")]
            log::error!("load_mtl - failed to open {:?} due to {}", file_name, _e);
            return Err(LoadError::OpenFileFailed);
        }
    };
    let mut reader = BufReader::new(file);
    load_mtl_buf(&mut reader)
}

/// Load the various meshes in an OBJ buffer of some kind, e.g. a
/// network stream, text file already in memory or so on.
///
/// You must pass a "material loader" function, which will return a material
/// given a name. A trivial material loader may just look at the file
/// name and then call `load_mtl_buf` with the in-memory MTL file source.
/// Alternatively it could pass an MTL file in memory to `load_mtl_buf` to
/// parse materials from some buffer.
///
/// # Example
/// The test for `load_obj_buf` includes the OBJ and MTL files as strings
/// and uses a `Cursor` to provide a `BufRead` interface on the buffer.
///
/// ```
/// use std::env;
/// use std::fs::File;
/// use std::io::BufReader;
///
/// let dir = env::current_dir().unwrap();
/// let mut cornell_box_obj = dir.clone();
/// cornell_box_obj.push("cornell_box.obj");
/// let mut cornell_box_file = BufReader::new(File::open(cornell_box_obj.as_path()).unwrap());
///
/// let mut cornell_box_mtl1 = dir.clone();
/// cornell_box_mtl1.push("cornell_box.mtl");
///
/// let mut cornell_box_mtl2 = dir.clone();
/// cornell_box_mtl2.push("cornell_box2.mtl");
///
/// let m = tobj::load_obj_buf(&mut cornell_box_file, true, |p| {
///     match p.file_name().unwrap().to_str().unwrap() {
///         "cornell_box.mtl" => {
///             let f = File::open(cornell_box_mtl1.as_path()).unwrap();
///             tobj::load_mtl_buf(&mut BufReader::new(f))
///         },
///         "cornell_box2.mtl" => {
///             let f = File::open(cornell_box_mtl2.as_path()).unwrap();
///             tobj::load_mtl_buf(&mut BufReader::new(f))
///         },
///         _ => unreachable!(),
///     }
/// });
/// ```
pub fn load_obj_buf<B, ML>(
    reader: &mut B,
    triangulate_faces: bool,
    material_loader: ML,
) -> LoadResult
where
    B: BufRead,
    ML: Fn(&Path) -> MTLLoadResult,
{
    let mut models = Vec::new();
    let mut materials = Vec::new();
    let mut mat_map = HashMap::new();

    let mut tmp_pos = Vec::new();
    let mut tmp_texcoord = Vec::new();
    let mut tmp_normal = Vec::new();
    let mut tmp_faces: Vec<Face> = Vec::new();
    // name of the current object being parsed
    let mut name = "unnamed_object".to_owned();
    // material used by the current object being parsed
    let mut mat_id = None;
    for line in reader.lines() {
        let (line, mut words) = match line {
            Ok(ref line) => (&line[..], line[..].split_whitespace()),
            Err(_e) => {
                #[cfg(feature = "log")]
                log::error!("load_obj - failed to read line due to {}", _e);
                return Err(LoadError::ReadError);
            }
        };
        match words.next() {
            Some("#") | None => continue,
            Some("v") => {
                if !parse_floatn(words, &mut tmp_pos, 3) {
                    return Err(LoadError::PositionParseError);
                }
            }
            Some("vt") => {
                if !parse_floatn(words, &mut tmp_texcoord, 2) {
                    return Err(LoadError::TexcoordParseError);
                }
            }
            Some("vn") => {
                if !parse_floatn(words, &mut tmp_normal, 3) {
                    return Err(LoadError::NormalParseError);
                }
            }
            Some("f") | Some("l") => {
                if !parse_face(
                    words,
                    &mut tmp_faces,
                    tmp_pos.len() / 3,
                    tmp_texcoord.len() / 2,
                    tmp_normal.len() / 3,
                ) {
                    return Err(LoadError::FaceParseError);
                }
            }
            // Just treating object and group tags identically. Should there be different behavior
            // for them?
            Some("o") | Some("g") => {
                // If we were already parsing an object then a new object name
                // signals the end of the current one, so push it onto our list of objects
                if !tmp_faces.is_empty() {
                    models.push(Model::new(
                        export_faces(
                            &tmp_pos,
                            &tmp_texcoord,
                            &tmp_normal,
                            &tmp_faces,
                            mat_id,
                            triangulate_faces,
                        )?,
                        name,
                    ));
                    tmp_faces.clear();
                }
                name = line[1..].trim().to_owned();
                if name.is_empty() {
                    name = "unnamed_object".to_owned();
                }
            }
            Some("mtllib") => {
                if let Some(mtllib) = words.next() {
                    let mat_file = Path::new(mtllib).to_path_buf();
                    match material_loader(mat_file.as_path()) {
                        Ok((mut mats, map)) => {
                            // Merge the loaded material lib with any currently loaded ones, offsetting
                            // the indices of the appended materials by our current length
                            let mat_offset = materials.len();
                            materials.append(&mut mats);
                            for m in map {
                                mat_map.insert(m.0, m.1 + mat_offset);
                            }
                        }
                        Err(e) => return Err(e),
                    }
                } else {
                    return Err(LoadError::MaterialParseError);
                }
            }
            Some("usemtl") => {
                let mat_name = line[7..].trim().to_owned();
                if !mat_name.is_empty() {
                    let new_mat = mat_map.get(&mat_name).cloned();
                    // As materials are returned per-model, a new material within an object
                    // has to emit a new model with the same name but different material
                    if mat_id != new_mat && !tmp_faces.is_empty() {
                        models.push(Model::new(
                            export_faces(
                                &tmp_pos,
                                &tmp_texcoord,
                                &tmp_normal,
                                &tmp_faces,
                                mat_id,
                                triangulate_faces,
                            )?,
                            name.clone(),
                        ));
                        tmp_faces.clear();
                    }
                    if new_mat.is_none() {
                        #[cfg(feature = "log")]
                        log::warn!("Object {} refers to unfound material: {}", name, mat_name);
                    }
                    mat_id = new_mat;
                } else {
                    return Err(LoadError::MaterialParseError);
                }
            }
            // Just ignore unrecognized characters
            Some(_) => {}
        }
    }
    // For the last object in the file we won't encounter another object name to tell us when it's
    // done, so if we're parsing an object push the last one on the list as well
    models.push(Model::new(
        export_faces(
            &tmp_pos,
            &tmp_texcoord,
            &tmp_normal,
            &tmp_faces,
            mat_id,
            triangulate_faces,
        )?,
        name,
    ));
    Ok((models, materials))
}

/// Load the various materials in a MTL buffer
pub fn load_mtl_buf<B: BufRead>(reader: &mut B) -> MTLLoadResult {
    let mut materials = Vec::new();
    let mut mat_map = HashMap::new();
    // The current material being parsed
    let mut cur_mat = Material::empty();
    for line in reader.lines() {
        let (line, mut words) = match line {
            Ok(ref line) => (line.trim(), line[..].split_whitespace()),
            Err(_e) => {
                #[cfg(feature = "log")]
                log::error!("load_obj - failed to read line due to {}", _e);
                return Err(LoadError::ReadError);
            }
        };
        match words.next() {
            Some("#") | None => continue,
            Some("newmtl") => {
                // If we were passing a material save it out to our vector
                if !cur_mat.name.is_empty() {
                    mat_map.insert(cur_mat.name.clone(), materials.len());
                    materials.push(cur_mat);
                }
                cur_mat = Material::empty();
                cur_mat.name = line[6..].trim().to_owned();
                if cur_mat.name.is_empty() {
                    return Err(LoadError::InvalidObjectName);
                }
            }
            Some("Ka") => {
                if !parse_float3(words, &mut cur_mat.ambient) {
                    return Err(LoadError::MaterialParseError);
                }
            }
            Some("Kd") => {
                if !parse_float3(words, &mut cur_mat.diffuse) {
                    return Err(LoadError::MaterialParseError);
                }
            }
            Some("Ks") => {
                if !parse_float3(words, &mut cur_mat.specular) {
                    return Err(LoadError::MaterialParseError);
                }
            }
            Some("Ns") => {
                if let Some(p) = words.next() {
                    match FromStr::from_str(p) {
                        Ok(x) => cur_mat.shininess = x,
                        Err(_) => return Err(LoadError::MaterialParseError),
                    }
                } else {
                    return Err(LoadError::MaterialParseError);
                }
            }
            Some("Ni") => {
                if let Some(p) = words.next() {
                    match FromStr::from_str(p) {
                        Ok(x) => cur_mat.optical_density = x,
                        Err(_) => return Err(LoadError::MaterialParseError),
                    }
                } else {
                    return Err(LoadError::MaterialParseError);
                }
            }
            Some("d") => {
                if let Some(p) = words.next() {
                    match FromStr::from_str(p) {
                        Ok(x) => cur_mat.dissolve = x,
                        Err(_) => return Err(LoadError::MaterialParseError),
                    }
                } else {
                    return Err(LoadError::MaterialParseError);
                }
            }
            Some("map_Ka") => match line.get(6..).map(str::trim) {
                Some("") | None => return Err(LoadError::MaterialParseError),
                Some(tex) => cur_mat.ambient_texture = tex.to_owned(),
            },
            Some("map_Kd") => match line.get(6..).map(str::trim) {
                Some("") | None => return Err(LoadError::MaterialParseError),
                Some(tex) => cur_mat.diffuse_texture = tex.to_owned(),
            },
            Some("map_Ks") => match line.get(6..).map(str::trim) {
                Some("") | None => return Err(LoadError::MaterialParseError),
                Some(tex) => cur_mat.specular_texture = tex.to_owned(),
            },
            Some("map_Bump") | Some("map_bump") => match line.get(8..).map(str::trim) {
                Some("") | None => return Err(LoadError::MaterialParseError),
                Some(tex) => cur_mat.normal_texture = tex.to_owned(),
            },
            Some("map_Ns") | Some("map_ns") | Some("map_NS") => {
                match line.get(6..).map(str::trim) {
                    Some("") | None => return Err(LoadError::MaterialParseError),
                    Some(tex) => cur_mat.shininess_texture = tex.to_owned(),
                }
            }
            Some("bump") => match line.get(4..).map(str::trim) {
                Some("") | None => return Err(LoadError::MaterialParseError),
                Some(tex) => cur_mat.normal_texture = tex.to_owned(),
            },
            Some("map_d") => match line.get(5..).map(str::trim) {
                Some("") | None => return Err(LoadError::MaterialParseError),
                Some(tex) => cur_mat.dissolve_texture = tex.to_owned(),
            },
            Some("illum") => {
                if let Some(p) = words.next() {
                    match FromStr::from_str(p) {
                        Ok(x) => cur_mat.illumination_model = Some(x),
                        Err(_) => return Err(LoadError::MaterialParseError),
                    }
                } else {
                    return Err(LoadError::MaterialParseError);
                }
            }
            Some(unknown) => {
                if !unknown.is_empty() {
                    let param = line[unknown.len()..].trim().to_owned();
                    cur_mat.unknown_param.insert(unknown.to_owned(), param);
                }
            }
        }
    }
    // Finalize the last material we were parsing
    if !cur_mat.name.is_empty() {
        mat_map.insert(cur_mat.name.clone(), materials.len());
        materials.push(cur_mat);
    }
    Ok((materials, mat_map))
}