1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
use core::ops::{Deref, DerefMut};

#[cfg(feature = "alloc")]
use std_alloc::vec::Vec;

/// Get the runtime size of some data structure
///
/// # Deprecated
/// Note: in a future version of `toad_common` this will be deprecated in favor of clearly delineating
/// "size in bytes" (e.g. `RuntimeSize`) from "collection of potentially bounded length" (e.g. `Len`)
///
/// ## Collections
/// For collections this just yields the number of elements ([`Vec::len`], [`tinyvec::ArrayVec::len`]),
/// and when the collection is over [`u8`]s,
/// then `get_size` represents the number of bytes in the collection.
///
/// ## Structs and enums
/// When implemented for items that are not collections,
/// this is expected to yield the runtime size in bytes
/// (not the static Rust [`core::mem::size_of`] size)
pub trait GetSize {
  /// Get the max size that this data structure can acommodate.
  const CAPACITY: Option<usize>;

  /// Get the runtime size (in bytes) of a struct
  ///
  /// For collections this is always equivalent to calling an inherent `len` method.
  ///
  /// ```
  /// use toad_common::GetSize;
  ///
  /// assert_eq!(vec![1u8, 2].get_size(), 2)
  /// ```
  fn get_size(&self) -> usize;

  /// Check if the runtime size is zero
  ///
  /// ```
  /// use toad_common::GetSize;
  ///
  /// assert!(Vec::<u8>::new().size_is_zero())
  /// ```
  fn size_is_zero(&self) -> bool {
    self.get_size() == 0
  }

  /// Is there no room left in this collection?
  ///
  /// ```
  /// use toad_common::GetSize;
  ///
  /// let array = tinyvec::ArrayVec::<[u8; 2]>::from([1, 2]);
  ///
  /// assert!(array.is_full())
  /// ```
  fn is_full(&self) -> bool;
}

#[cfg(feature = "alloc")]
impl<T> GetSize for Vec<T> {
  const CAPACITY: Option<usize> = None;

  fn get_size(&self) -> usize {
    self.len()
  }

  fn is_full(&self) -> bool {
    false
  }
}

impl<A: tinyvec::Array> GetSize for tinyvec::ArrayVec<A> {
  const CAPACITY: Option<usize> = Some(A::CAPACITY);

  fn get_size(&self) -> usize {
    self.len()
  }

  fn is_full(&self) -> bool {
    self.len() >= self.capacity()
  }
}

/// Create a data structure and reserve some amount of space for it to grow into
///
/// # Examples
/// - `Vec` is `Reserve`, and invokes `Vec::with_capacity`
/// - `tinyvec::ArrayVec` is `Reserve` and invokes `Default::default()` because creating an `ArrayVec` automatically allocates the required space on the stack.
pub trait Reserve: Default {
  /// Create an instance of the collection with a given capacity.
  ///
  /// Used to reserve some contiguous space, e.g. [`Vec::with_capacity`]
  ///
  /// The default implementation invokes `Default::default`
  fn reserve(_: usize) -> Self {
    Default::default()
  }
}

/// Truncate this collection to a new length.
///
/// If self was shorter than `len`, nothing happens.
///
/// If self was longer, drops elements up to `len`
pub trait Trunc
  where Self: Sized
{
  #[allow(missing_docs)]
  fn trunc(&mut self, len: usize) -> ();

  /// Erase all elements in the collection
  fn clear(&mut self) {
    self.trunc(0);
  }
}

#[cfg(feature = "alloc")]
impl<T> Trunc for Vec<T> {
  fn trunc(&mut self, len: usize) -> () {
    self.truncate(len)
  }
}

impl<T, const N: usize> Trunc for tinyvec::ArrayVec<[T; N]> where T: Default
{
  fn trunc(&mut self, len: usize) -> () {
    self.truncate(len)
  }
}

/// Fill this collection to the end with copies of `t`,
/// copying array initialization `[0u8; 1000]` to the [`Array`] trait.
///
/// If the collection has no end (e.g. [`Vec`]),
/// this trait's methods will return `None`.
pub trait Filled<T>: Sized {
  #[allow(missing_docs)]
  fn filled(t: T) -> Option<Self>
    where T: Copy
  {
    Self::filled_using(|| t)
  }

  #[allow(missing_docs)]
  fn filled_default() -> Option<Self>
    where T: Default
  {
    Self::filled_using(|| Default::default())
  }

  #[allow(missing_docs)]
  fn filled_using<F>(f: F) -> Option<Self>
    where F: Fn() -> T;
}

#[cfg(feature = "alloc")]
impl<T> Reserve for Vec<T> {
  fn reserve(n: usize) -> Self {
    Self::with_capacity(n)
  }
}

#[cfg(feature = "alloc")]
impl<T> Filled<T> for Vec<T> {
  fn filled_using<F>(_: F) -> Option<Self>
    where F: Fn() -> T
  {
    None
  }
}

impl<A: tinyvec::Array> Reserve for tinyvec::ArrayVec<A> {}

impl<T, const N: usize> Filled<T> for tinyvec::ArrayVec<[T; N]> where T: Default
{
  fn filled_using<F>(f: F) -> Option<Self>
    where F: Fn() -> T
  {
    Some(core::iter::repeat(()).take(N).map(|_| f()).collect())
  }

  fn filled(t: T) -> Option<Self>
    where T: Copy
  {
    Some(Self::from([t; N]))
  }
}

/// An ordered indexable collection of some type `Item`
///
/// # Provided implementations
/// - [`Vec`]
/// - [`tinyvec::ArrayVec`]
///
/// Notably, not `heapless::ArrayVec` or `arrayvec::ArrayVec`. An important usecase within `toad`
/// is [`Extend`]ing the collection, and the performance of `heapless` and `arrayvec`'s Extend implementations
/// are notably worse than `tinyvec`.
///
/// `tinyvec` also has the added bonus of being 100% unsafe-code-free, meaning if you choose `tinyvec` you eliminate the
/// possibility of memory defects and UB.
///
/// # Requirements
/// - [`Default`] for creating the collection
/// - [`Extend`] for mutating and adding onto the collection (1 or more elements)
/// - [`Reserve`] for reserving space ahead of time
/// - [`GetSize`] for bound checks, empty checks, and accessing the length
/// - [`FromIterator`] for [`collect`](core::iter::Iterator#method.collect)ing into the collection
/// - [`IntoIterator`] for iterating and destroying the collection
/// - [`Deref<Target = [T]>`](Deref) and [`DerefMut`] for:
///    - indexing ([`Index`](core::ops::Index), [`IndexMut`](core::ops::IndexMut))
///    - iterating ([`&[T].iter()`](primitive@slice#method.iter) and [`&mut [T].iter_mut()`](primitive@slice#method.iter_mut))
pub trait Array:
  Default
  + GetSize
  + Reserve
  + Filled<<Self as Array>::Item>
  + Trunc
  + Deref<Target = [<Self as Array>::Item]>
  + DerefMut
  + Extend<<Self as Array>::Item>
  + FromIterator<<Self as Array>::Item>
  + IntoIterator<Item = <Self as Array>::Item>
{
  /// The type of item contained in the collection
  type Item;

  /// Insert a value at a particular index of a collection.
  fn insert_at(&mut self, index: usize, value: <Self as Array>::Item);

  /// Try to remove an entry from the collection.
  ///
  /// Returns `Some(Self::Item)` if `index` was in-bounds, `None` if `index` is out of bounds.
  fn remove(&mut self, index: usize) -> Option<<Self as Array>::Item>;

  /// Add a value to the end of a collection.
  fn push(&mut self, value: <Self as Array>::Item);
}

/// Collections that support extending themselves mutably from copyable slices
pub trait AppendCopy<T: Copy> {
  /// Extend self mutably, copying from a slice.
  ///
  /// Worst-case implementations copy 1 element at a time (time O(n))
  ///
  /// Best-case implementations copy as much of the origin slice
  /// at once as possible (system word size), e.g. [`Vec::append`].
  /// (still linear time, but on 64-bit systems this is 64 times faster than a 1-by-1 copy.)
  fn append_copy(&mut self, i: &[T]);
}

#[cfg(feature = "alloc")]
impl<T: Copy> AppendCopy<T> for Vec<T> {
  fn append_copy(&mut self, i: &[T]) {
    self.extend(i);
  }
}

impl<T: Copy, A: tinyvec::Array<Item = T>> AppendCopy<T> for tinyvec::ArrayVec<A> {
  fn append_copy(&mut self, i: &[T]) {
    self.extend_from_slice(i);
  }
}

#[cfg(feature = "alloc")]
impl<T> Array for Vec<T> {
  type Item = T;

  fn insert_at(&mut self, index: usize, value: T) {
    self.insert(index, value);
  }

  fn remove(&mut self, index: usize) -> Option<T> {
    if index < self.len() {
      Some(Vec::remove(self, index))
    } else {
      None
    }
  }

  fn push(&mut self, value: T) {
    self.push(value)
  }
}

impl<A: tinyvec::Array<Item = T>, T> Array for tinyvec::ArrayVec<A> where Self: Filled<T> + Trunc
{
  type Item = T;

  fn insert_at(&mut self, index: usize, value: A::Item) {
    self.insert(index, value);
  }

  fn remove(&mut self, index: usize) -> Option<T> {
    if index < self.len() {
      Some(tinyvec::ArrayVec::remove(self, index))
    } else {
      None
    }
  }

  fn push(&mut self, value: A::Item) {
    self.push(value)
  }
}