1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
//! This is a platform agnostic Rust driver for the TMP102 and TMP112
//! high-accuracy, low-power, digital temperature sensors, based on the
//! [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Enable/disable the device.
//! - Read the temperature.
//! - Enable/disable the extended measurement mode.
//! - Trigger a one-shot measurement.
//! - Read whether the one-shot measurement result is ready.
//! - Set the conversion rate.
//! - Set the high/low temperature threshold.
//! - Set the fault queue.
//! - Set the alert polarity.
//! - Set the thermostat mode.
//! - Read whether a comparator mode alert is active.
//!
//! ## The devices
//!
//! This driver is compatible with both the TMP102 device as well as the TMP112
//! family of devices, including TMP112A, TMP112B and TMP112N.
//! 
//! ### TMP102
//! The TMP102 device is a digital temperature sensor ideal for NTC/PTC
//! thermistor replacement where high accuracy is required. The device offers
//! an accuracy of +/-0.5°C without requiring calibration or external component
//! signal conditioning. Device temperature sensors are highly linear and do
//! not require complex calculations or lookup tables to derive the
//! temperature. The on-chip 12-bit ADC offers resolutions down to 0.0625°C.
//!
//! The TMP112 family features SMBus(TM), two-wire and I2C interface
//! compatibility, and allows up to four devices on one bus. The device also
//! features an SMBus alert function. The device is specified to operate over
//! supply voltages from 1.4 to 3.6 V with the maximum quiescent current of
//! 10 μA over the full operating range.
//!
//! The TMP102 device is ideal for extended temperature measurement in a
//! variety of communication, computer, consumer, environmental, industrial,
//! and instrumentation applications. The device is specified for operation
//! over a temperature range of -40°C to 125°C.
//!
//! ### TMP112
//! The TMP112 family of devices are digital temperature sensors designed for
//! high-accuracy, low-power, NTC/PTC thermistor replacements where high
//! accuracy is required. The TMP112A and TMP112B offers 0.5°C accuracy and are
//! optimized to provide the best PSR performance for 3.3V and 1.8V operation
//! respectively, while TMP112N offers 1°C accuracy. These temperature sensors
//! are highly linear and do not require complex calculations or lookup tables
//! to derive the temperature. The on-chip 12-bit ADC offers resolutions down
//! to 0.0625°C.
//!
//! The TMP112 family features SMBus, two-wire and I2C interface compatibility,
//! and allows up to four devices on one bus. The device also features an SMBus
//! alert function. The device is specified to operate over supply voltages
//! from 1.4 to 3.6 V with the maximum quiescent current of 10 μA over the full
//! operating range.
//!
//! The TMP112 family is designed for extended temperature measurement in
//! communication, computer, consumer, environmental, industrial, and
//! instrumentation applications. The device is specified for operation over a
//! temperature range of -40°C to +125°C.
//!
//! Datasheets:
//! - [TMP102](http://www.ti.com/lit/ds/symlink/tmp102.pdf)
//! - [TMP112x](http://www.ti.com/lit/ds/symlink/tmp112.pdf)
//!
//! ## Usage examples (see also examples folder)
//!
//! ### Read temperature
//!
//! Import this crate and an `embedded_hal` implementation, then instantiate
//! the device:
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let mut sensor = Tmp1x2::new(dev, address);
//! let temperature = sensor.read_temperature().unwrap();
//! println!("Temperature: {}", temperature);
//! # }
//! ```
//!
//! ### Provide an alternative address
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let (a1, a0) = (false, true);
//! let address = SlaveAddr::Alternative(a1, a0);
//! let mut sensor = Tmp1x2::new(dev, address);
//! # }
//! ```
//!
//! ### Enable / disable the sensor
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp1x2::new(dev, SlaveAddr::default());
//! sensor.disable().unwrap(); // shutdown
//! sensor.enable().unwrap();
//! # }
//! ```
//!
//! ### Enable the extended measurement mode
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp1x2::new(dev, SlaveAddr::default());
//! sensor.enable_extended_mode().unwrap();
//! # }
//! ```
//!
//! ### Trigger a one-shot measurement while in shutdown
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp1x2::new(dev, SlaveAddr::default());
//! sensor.disable().unwrap(); // shutdown
//! sensor.trigger_one_shot_measurement().unwrap();
//! while(!sensor.is_one_shot_measurement_result_ready().unwrap()) {
//!     // insert some delay here
//! }
//! let temperature = sensor.read_temperature().unwrap();
//! # }
//! ```
//!
//! ### Set the conversion rate to 1Hz
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr, ConversionRate };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp1x2::new(dev, SlaveAddr::default());
//! sensor.set_conversion_rate(ConversionRate::_1Hz).unwrap();
//! # }
//! ```
//!
//! ### Set the high and low temperature thresholds
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr, ConversionRate };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp1x2::new(dev, SlaveAddr::default());
//! sensor.set_low_temperature_threshold(-15.0).unwrap();
//! sensor.set_high_temperature_threshold(60.0).unwrap();
//! # }
//! ```
//!
//! ### Set the fault queue
//!
//! This sets the number of consecutive faults that will trigger an alert.
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr, FaultQueue };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp1x2::new(dev, SlaveAddr::default());
//! sensor.set_fault_queue(FaultQueue::_4).unwrap();
//! # }
//! ```
//!
//! ### Set the alert polarity
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr, AlertPolarity };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp1x2::new(dev, SlaveAddr::default());
//! sensor.set_alert_polarity(AlertPolarity::ActiveHigh).unwrap();
//! # }
//! ```
//!
//! ### Set the thermostat mode
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr, ThermostatMode };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp1x2::new(dev, SlaveAddr::default());
//! sensor.set_thermostat_mode(ThermostatMode::Interrupt).unwrap();
//! # }
//! ```
//!
//! ### Check whether an alert is active as defined by the comparator mode
//!
//! Note that this ignores the thermostat mode setting and always refers to
//! the status as defined by the comparator mode.
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp1x2;
//!
//! use hal::I2cdev;
//! use tmp1x2::{ Tmp1x2, SlaveAddr };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp1x2::new(dev, SlaveAddr::default());
//! let alert = sensor.is_comparator_mode_alert_active().unwrap();
//! # }
//! ```

#![deny(unsafe_code)]
#![deny(missing_docs)]
#![no_std]

extern crate embedded_hal as hal;
use hal::blocking::i2c;

/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
    /// I²C bus error
    I2C(E),
}

/// Conversion rate for continuous conversion mode
#[derive(Debug, Clone)]
pub enum ConversionRate {
    /// 0.25Hz
    _0_25Hz,
    /// 1Hz
    _1Hz,
    /// 4 Hz (default)
    _4Hz,
    /// 8 Hz
    _8Hz,
}

/// Fault queue
///
/// Number of consecutive faults necessary to trigger an alert.
#[derive(Debug, Clone)]
pub enum FaultQueue {
    /// 1 fault will trigger an alert (default)
    _1,
    /// 2 consecutive faults will trigger an alert
    _2,
    /// 4 consecutive faults will trigger an alert
    _4,
    /// 6 consecutive faults will trigger an alert
    _6,
}
        
/// Alert polarity
#[derive(Debug, Clone)]
pub enum AlertPolarity {
    /// Active low (default)
    ActiveLow,
    /// Active high
    ActiveHigh
}

/// Thermostat mode
#[derive(Debug, Clone)]
pub enum ThermostatMode {
    /// Comparator (default)
    ///
    /// In this mode an alert is generated (set alert pin and alert bit
    /// according to selected active polarity) when the temperature equals or
    /// exceeds the value set as *high* temperature threshold and remains
    /// active until the temperature falls below the value set as *low*
    /// temperature threshold.
    Comparator,
    /// Interrupt
    ///
    /// In this mode an alert is generated (set alert pin and alert bit
    /// according to selected active polarity) when the temperature exceeds the
    /// value set as *high* temperature threshold or goes below the value set
    /// as *low* temperature threshold.
    Interrupt
}

/// Possible slave addresses
#[derive(Debug, Clone)]
pub enum SlaveAddr {
    /// Default slave address
    Default,
    /// Alternative slave address providing bit values for A1 and A0
    Alternative(bool, bool)
}

impl Default for SlaveAddr {
    /// Default slave address
    fn default() -> Self {
        SlaveAddr::Default
    }
}

impl SlaveAddr {
    fn addr(self, default: u8) -> u8 {
        match self {
            SlaveAddr::Default => default,
            SlaveAddr::Alternative(a1, a0) => default           |
                                              ((a1 as u8) << 1) |
                                                a0 as u8
        }
    }
}


const DEVICE_BASE_ADDRESS: u8 = 0b100_1000;

struct Register;

impl Register {
    const TEMPERATURE : u8 = 0x00;
    const CONFIG      : u8 = 0x01;
    const T_LOW       : u8 = 0x02;
    const T_HIGH      : u8 = 0x03;
}

struct BitFlagsLow;

impl BitFlagsLow {
    const SHUTDOWN        : u8 = 0b0000_0001;
    const THERMOSTAT      : u8 = 0b0000_0010;
    const ALERT_POLARITY  : u8 = 0b0000_0100;
    const FAULT_QUEUE0    : u8 = 0b0000_1000;
    const FAULT_QUEUE1    : u8 = 0b0001_0000;
    const RESOLUTION      : u8 = 0b0110_0000;
    const ONE_SHOT        : u8 = 0b1000_0000;
}

struct BitFlagsHigh;

impl BitFlagsHigh {
    const EXTENDED_MODE : u8 = 0b0001_0000;
    const ALERT         : u8 = 0b0010_0000;
    const CONV_RATE0    : u8 = 0b0100_0000;
    const CONV_RATE1    : u8 = 0b1000_0000;
}

#[derive(Debug, Clone)]
struct Config {
    lsb: u8,
    msb: u8
}

impl Default for Config {
    fn default() -> Self {
        Config { lsb: BitFlagsLow::RESOLUTION,
                 msb: BitFlagsHigh::ALERT | BitFlagsHigh::CONV_RATE1 }
    }
}

/// TMP1X2 device driver.
#[derive(Debug, Default)]
pub struct Tmp1x2<I2C> {
    /// The concrete I²C device implementation.
    i2c: I2C,
    /// The I²C device address.
    address: u8,
    /// Configuration register status.
    config: Config,
}

impl<I2C, E> Tmp1x2<I2C>
where
    I2C: i2c::Write<Error = E>
{
    /// Create new instance of the TMP102 or TMP112x device.
    pub fn new(i2c: I2C, address: SlaveAddr) -> Self {
        Tmp1x2 {
            i2c,
            address: address.addr(DEVICE_BASE_ADDRESS),
            config: Config::default()
        }
    }

    /// Destroy driver instance, return I²C bus instance.
    pub fn destroy(self) -> I2C {
        self.i2c
    }
}

mod configuration;
mod conversion;
mod reading;

#[cfg(test)]
mod tests {
    use super::*;
    extern crate embedded_hal_mock as hal;

    #[test]
    fn can_get_default_address() {
        let addr = SlaveAddr::default();
        assert_eq!(DEVICE_BASE_ADDRESS, addr.addr(DEVICE_BASE_ADDRESS));
    }

    #[test]
    fn can_generate_alternative_addresses() {
        assert_eq!(0b100_1000, SlaveAddr::Alternative(false, false).addr(DEVICE_BASE_ADDRESS));
        assert_eq!(0b100_1001, SlaveAddr::Alternative(false,  true).addr(DEVICE_BASE_ADDRESS));
        assert_eq!(0b100_1010, SlaveAddr::Alternative( true, false).addr(DEVICE_BASE_ADDRESS));
        assert_eq!(0b100_1011, SlaveAddr::Alternative( true,  true).addr(DEVICE_BASE_ADDRESS));
    }

    #[test]
    fn default_config() {
        let dev = Tmp1x2::new(hal::i2c::Mock::new(&[]), SlaveAddr::default());
        assert_eq!(0b0110_0000, dev.config.lsb);
        assert_eq!(0b1010_0000, dev.config.msb);
    }
}