1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
//! This is a platform agnostic Rust driver for the TMP006/TMP006B non-contact
//! infrared (IR) thermopile temperature sensor, based on the
//! [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Enable/disable the device. See: [`enable()`].
//! - Read the object temperature. See: [`read_object_temperature()`].
//! - Read the object voltage and ambient temperature raw data. See: [`read_sensor_data()`].
//! - Calculate the object temperature from the sensor raw data. See: [`calculate_object_temperature()`].
//! - Set the ADC conversion rate. See: [`set_conversion_rate()`].
//! - Enable/disable the DRDY pin. See: [`enable_drdy_pin()`].
//! - Read whether data is ready to be read. See: [`is_data_ready()`].
//! - Perform a software reset. See: [`reset()`].
//! - Read the manufacturer ID. See: [`read_manufacturer_id()`].
//! - Read the device ID. See: [`read_device_id()`].
//!
//! [`enable()`]: struct.Tmp006.html#method.enable
//! [`read_object_temperature()`]: struct.Tmp006.html#method.read_object_temperature
//! [`read_sensor_data()`]: struct.Tmp006.html#method.read_sensor_data
//! [`calculate_object_temperature()`]: struct.Tmp006.html#method.calculate_object_temperature
//! [`set_conversion_rate()`]: struct.Tmp006.html#method.set_conversion_rate
//! [`enable_drdy_pin()`]: struct.Tmp006.html#method.enable_drdy_pin
//! [`is_data_ready()`]: struct.Tmp006.html#method.is_data_ready
//! [`reset()`]: struct.Tmp006.html#method.reset
//! [`read_manufacturer_id()`]: struct.Tmp006.html#method.read_manufacturer_id
//! [`read_device_id()`]: struct.Tmp006.html#method.read_device_id
//!
//! [Introductory blog post](https://blog.eldruin.com/tmp006-contact-less-infrared-ir-thermopile-driver-in-rust/)
//!
//! ## The device
//!
//! The TMP006 and TMP006B are the first in a series of temperature sensors
//! that measure the temperature of an object without the need to make contact
//! with the object. This sensor uses a thermopile to absorb the infrared
//! energy emitted from the object being measured and uses the corresponding
//! change in thermopile voltage to determine the object temperature.
//!
//! Infrared sensor voltage range is specified from -40°C to +125°C to enable
//! use in a wide range of applications. Low power consumption along with low
//! operating voltage makes the device suitable for battery-powered
//! applications. The low package height of the chip-scale format enables
//! standard high- volume assembly methods, and can be useful where limited
//! spacing to the object being measured is available.
//!
//! Datasheet:
//! - [TMP006/B](http://www.ti.com/ww/eu/sensampbook/tmp006.pdf)
//! User guide:
//! - [TMP006 user guide](https://cdn-shop.adafruit.com/datasheets/tmp006ug.pdf)
//!
//! ## Usage examples (see also examples folder)
//!
//! To use this driver, import this crate and an `embedded_hal` implementation,
//! then instantiate the device.
//!
//! Please find additional examples in this repository: [tmp006-examples]
//!
//! [tmp006-examples]: https://github.com/eldruin/tmp006-examples
//!
//! ### Read object temperature
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! #[macro_use]
//! extern crate nb;
//! extern crate tmp006;
//!
//! use hal::I2cdev;
//! use tmp006::{Tmp006, SlaveAddr};
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let mut sensor = Tmp006::new(dev, address);
//! let calibration_factor = 6e-14;
//! let temperature = block!(sensor
//!     .read_object_temperature(calibration_factor))
//!     .unwrap();
//! println!("Temperature: {}K", temperature);
//! # }
//! ```
//!
//! ### Provide an alternative address
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp006;
//!
//! use hal::I2cdev;
//! use tmp006::{Tmp006, SlaveAddr};
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let (a2, a1, a0) = (false, false, true);
//! let address = SlaveAddr::Alternative(a2, a1, a0);
//! let mut sensor = Tmp006::new(dev, address);
//! # }
//! ```
//!
//! ### Read raw sensor data and calculate the object temperature manually
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! #[macro_use]
//! extern crate nb;
//! extern crate tmp006;
//!
//! use hal::I2cdev;
//! use tmp006::{Tmp006, SlaveAddr};
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp006::new(dev, SlaveAddr::default());
//! let data = block!(sensor.read_sensor_data()).unwrap();
//! println!(
//!     "Object voltage: {}\nAmbient temperature: {}",
//!     data.object_voltage, data.ambient_temperature);
//! let calibration_factor = 6e-14;
//! let temp = sensor.calculate_object_temperature(data, calibration_factor);
//! println!("Temperature: {}K", temp);
//! # }
//! ```
//!
//! ### Set the conversion rate to 2 per second
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp006;
//!
//! use hal::I2cdev;
//! use tmp006::{ConversionRate, Tmp006, SlaveAddr};
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp006::new(dev, SlaveAddr::default());
//! sensor.set_conversion_rate(ConversionRate::Cps2).unwrap();
//! # }
//! ```
//!
//! ### Enable the DRDY (data ready) pin
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp006;
//!
//! use hal::I2cdev;
//! use tmp006::{ConversionRate, Tmp006, SlaveAddr};
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp006::new(dev, SlaveAddr::default());
//! sensor.enable_drdy_pin().unwrap();
//! # }
//! ```
//!
//! ### Read whether the data is ready to be read
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tmp006;
//!
//! use hal::I2cdev;
//! use tmp006::{ConversionRate, Tmp006, SlaveAddr};
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tmp006::new(dev, SlaveAddr::default());
//! loop {
//!     let ready = sensor.is_data_ready().unwrap();
//!     println!("Data ready?: {}", ready);
//!     // add some delay here...
//! }
//! # }
//! ```
#![deny(missing_docs, unsafe_code, warnings)]
#![no_std]

extern crate embedded_hal as hal;
extern crate libm;
extern crate nb;
// necessary only for targets without math function implementation
#[allow(unused_imports)]
use libm::F64Ext;

/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
    /// I²C bus error
    I2C(E),
}

/// ADC conversion rate
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ConversionRate {
    /// 4 conversions per second
    Cps4,
    /// 2 conversions per second
    Cps2,
    /// 1 conversion per second (default)
    Cps1,
    /// 0.5 conversions per second
    Cps0_5,
    /// 0.25 conversions per second
    Cps0_25,
}

/// Data as read from the sensor.
///
/// These values can be used to calculate the object temperature as done in
/// [`read_object_temperature()`].
///
/// [`read_object_temperature()`]: struct.Tmp006.html#method.read_object_temperature
#[derive(Debug, Default, Clone, Copy, PartialEq)]
pub struct SensorData {
    /// Object voltage: `[-32768..32767]`
    pub object_voltage: i16,
    /// Ambient temperature: `[-8192..8191]`
    pub ambient_temperature: i16,
}

/// Possible slave addresses
#[derive(Debug, Clone)]
pub enum SlaveAddr {
    /// Default slave address
    Default,
    /// Alternative slave address providing bit values for A2, A1 and A0
    ///
    /// Some of these combinations require connecting the ADDR0 pin to
    /// SCL or SDA. Check table 1 on page 7 of the datasheet: [TMP006/B].
    Alternative(bool, bool, bool),
}

impl Default for SlaveAddr {
    /// Default slave address
    fn default() -> Self {
        SlaveAddr::Default
    }
}

impl SlaveAddr {
    fn addr(self, default: u8) -> u8 {
        match self {
            SlaveAddr::Default => default,
            SlaveAddr::Alternative(a2, a1, a0) => {
                default
                    | ((a2 as u8) << 2)
                    | ((a1 as u8) << 1)
                    | a0 as u8
        }
    }
}
}

const DEVICE_BASE_ADDRESS: u8 = 0b100_0000;

struct Register;
impl Register {
    const V_OBJECT     : u8 = 0x00;
    const TEMP_AMBIENT : u8 = 0x01;
    const CONFIG       : u8 = 0x02;
    const MANUFAC_ID   : u8 = 0xFE;
    const DEVICE_ID    : u8 = 0xFE;
}


struct BitFlagsHigh;
impl BitFlagsHigh {
    const SW_RESET : u8 = 0b1000_0000;
    const MOD      : u8 = 0b0111_0000;
    const CR2      : u8 = 0b0000_1000;
    const CR1      : u8 = 0b0000_0100;
    const CR0      : u8 = 0b0000_0010;
    const DRDY_EN  : u8 = 0b0000_0001;
}
struct BitFlagsLow;
impl BitFlagsLow {
    const DRDY     : u8 = 0b1000_0000;
}

#[derive(Debug, Clone, Copy)]
struct ConfigHigh {
    bits: u8,
}

/// TMP006 device driver.
#[derive(Debug, Default)]
pub struct Tmp006<I2C> {
    /// The concrete I²C device implementation.
    i2c: I2C,
    /// The I²C device address.
    address: u8,
    /// Configuration register status.
    config: ConfigHigh,
}

mod config;
mod reading;

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn can_get_default_address() {
        let addr = SlaveAddr::default();
        assert_eq!(DEVICE_BASE_ADDRESS, addr.addr(DEVICE_BASE_ADDRESS));
    }

    #[test]
    fn can_generate_alternative_addresses() {
        assert_eq!(0b100_0000, SlaveAddr::Alternative(false, false, false).addr(DEVICE_BASE_ADDRESS));
        assert_eq!(0b100_0001, SlaveAddr::Alternative(false, false,  true).addr(DEVICE_BASE_ADDRESS));
        assert_eq!(0b100_0010, SlaveAddr::Alternative(false,  true, false).addr(DEVICE_BASE_ADDRESS));
        assert_eq!(0b100_0100, SlaveAddr::Alternative( true, false, false).addr(DEVICE_BASE_ADDRESS));
        assert_eq!(0b100_0111, SlaveAddr::Alternative( true,  true,  true).addr(DEVICE_BASE_ADDRESS));
    }
}