1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
//! Timers

use crate::{
    hal::timer::{CountDown, Periodic},
    sysctl::{self, Clocks},
};
use nb;

#[rustfmt::skip]
use tm4c123x::{
    TIMER0, TIMER1, TIMER2, TIMER3, TIMER4, TIMER5,
    WTIMER0, WTIMER1, WTIMER2, WTIMER3, WTIMER4, WTIMER5,
};
use tm4c_hal::time::Hertz;
use void::Void;

/// Hardware timers
pub struct Timer<TIM> {
    tim: TIM,
    clocks: Clocks,
    timeout: Hertz,
}

/// Interrupt events
pub enum Event {
    /// Timer timed out / count down ended
    TimeOut,
}

macro_rules! hal {
    ($($TIM:ident: ($tim:ident, $powerDomain:ident),)+) => {
        $(
            impl Periodic for Timer<$TIM> {}

            impl CountDown for Timer<$TIM> {
                type Time = Hertz;

                #[allow(unused_unsafe)]
                fn start<T>(&mut self, timeout: T)
                where
                    T: Into<Hertz>,
                {
                    // Disable timer
                    self.tim.ctl.modify(|_, w|
					w.taen().clear_bit()
					.tben().clear_bit()
                    );
                    self.timeout = timeout.into();

                    let frequency = self.timeout.0;
                    let ticks = self.clocks.sysclk.0 / frequency;

                    self.tim.tav.write(|w| unsafe { w.bits(ticks) });
                    self.tim.tailr.write(|w| unsafe { w.bits(ticks) });

                    // // start counter
                    self.tim.ctl.modify(|_, w|
                        w.taen().set_bit()
                    );
                }

                fn wait(&mut self) -> nb::Result<(), Void> {
                    if self.tim.ris.read().tatoris().bit_is_clear () {
                        Err(nb::Error::WouldBlock)
                    } else {
                        self.tim.icr.write(|w| w.tatocint().set_bit());
                        Ok(())
                    }
                }
            }

            impl Timer<$TIM> {
                // XXX(why not name this `new`?) bummer: constructors need to have different names
                // even if the `$TIM` are non overlapping (compare to the `free` function below
                // which just works)
                /// Configures a TIM peripheral as a periodic count down timer
                pub fn $tim<T>(tim: $TIM, timeout: T,
                               pc: &sysctl::PowerControl,
                               clocks: &Clocks,
                ) -> Self
                where
                    T: Into<Hertz>,
                {
                    // power up
                    sysctl::control_power(
                        pc, sysctl::Domain::$powerDomain,
                        sysctl::RunMode::Run, sysctl::PowerState::On);
                    sysctl::reset(pc, sysctl::Domain::$powerDomain);

                    // Stop Timers
                    tim.ctl.write(|w|
                                  w.taen().clear_bit()
                                  .tben().clear_bit()
                                  .tastall().set_bit()
                    );

                    // GPTMCFG = 0x0 (chained - 2x16 = 32bits) This
                    // will not force 32bits wide timer, this will
                    // really force the wider range to be used (32 for
                    // 16/32bits timers, 64 for 32/64).
                    tim.cfg.write(|w| w.cfg()._32_bit_timer());

                    tim.tamr.write(|w| w.tamr().period());

                    let mut timer = Timer {
                        tim:tim,
                        clocks: *clocks,
                        timeout: Hertz(0),
                    };
                    timer.start(timeout);

                    timer
                }

                /// Starts listening for an `event`
                pub fn listen(&mut self, event: Event) {
                    match event {
                        Event::TimeOut => {
                            // Enable update event interrupt
                            self.tim.imr.modify(|_,w|  w.tatoim().set_bit());
                        }
                    }
                }

                /// Stops listening for an `event`
                pub fn unlisten(&mut self, event: Event) {
                    match event {
                        Event::TimeOut => {
                            // Enable update event interrupt
                            self.tim.imr.modify(|_,w| w.tatoim().clear_bit());
                        }
                    }
                }

                /// Releases the TIM peripheral
                pub fn free(self) -> $TIM {
                    // pause counter
                    self.tim.ctl.write(|w|
                                  w.taen().clear_bit()
                                  .tben().clear_bit());
                    self.tim
                }
            }
        )+
    }
}

hal! {
    TIMER0: (timer0, Timer0),
    TIMER1: (timer1, Timer1),
    TIMER2: (timer2, Timer2),
    TIMER3: (timer3, Timer3),
    TIMER4: (timer4, Timer4),
    TIMER5: (timer5, Timer5),

    WTIMER0: (wtimer0, WideTimer0),
    WTIMER1: (wtimer1, WideTimer1),
    WTIMER2: (wtimer2, WideTimer2),
    WTIMER3: (wtimer3, WideTimer3),
    WTIMER4: (wtimer4, WideTimer4),
    WTIMER5: (wtimer5, WideTimer5),
}