1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// Copyright 2017-2019 David Roundy
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! A set that is compact in size.

use std;
use std::marker::PhantomData;
#[cfg(test)]
use proptest::prelude::*;

/// This describes a type which can be stored in 64 bits without loss.
/// It is defined for all signed and unsigned integer types, as well
/// as `char`.  In each case, we store sets consisting exclusively of
/// "small" integers efficiently.
pub trait Fits64 : Copy {
    /// Convert back *from* a u64.  This is unsafe, since it is only
    /// infallible (and lossless) if the `u64` originally came from
    /// type `Self`.
    unsafe fn from_u64(x: u64) -> Self;
    /// Convert to a `u64`.  This should be infallible.
    fn to_u64(self) -> u64;
}
/// A utility function that is useful for testing your Fits64
/// implentation.
pub fn test_fits64<T: Fits64+Eq+std::fmt::Debug>(x: T) {
    let x64 = x.to_u64();
    let y = unsafe { T::from_u64(x64) };
    let y64 = y.to_u64();
    assert_eq!(x, y);
    assert_eq!(x64, y64);
}


macro_rules! define_fits {
    ($ty: ty, $test_name: ident) => {
        impl Fits64 for $ty {
            #[inline]
            unsafe fn from_u64(x: u64) -> Self { x as $ty }
            #[inline]
            fn to_u64(self) -> u64 { self as u64 }
        }
        #[cfg(test)]
        proptest!{
            #[test]
            fn $test_name(x: $ty) {
                test_fits64(x);
            }
        }
    };
}
define_fits!(u64, fits_u64);
define_fits!(u32, fits_u32);
define_fits!(u16, fits_u16);
define_fits!(u8, fits_u8);
define_fits!(usize, fits_usize);
impl Fits64 for char {
    #[inline]
    unsafe fn from_u64(x: u64) -> Self {
        std::char::from_u32(x as u32).unwrap()
    }
    #[inline]
    fn to_u64(self) -> u64 { self as u64 }
}
// The following constant allows me to check whether it is faster to
// handle negative numbers with an if expression or by doing bit
// manipulation more directly.
const USE_BRANCHES: bool = false;
macro_rules! define_ifits {
    ($ty: ty, $uty: ty, $test_name: ident) => {
        impl Fits64 for $ty {
            #[inline]
            unsafe fn from_u64(x: u64) -> Self {
                let pos_val = (x >> 1) as $ty;
                let neg_val = !(x >> 1) as $ty;
                if USE_BRANCHES {
                    if x & 1 == 1 {
                        neg_val
                    } else {
                        pos_val
                    }
                } else {
                    let pos_mask = (x & 1) as $ty - 1;
                    (pos_val & pos_mask) | (neg_val & !pos_mask)
                }
            }
            #[inline]
            fn to_u64(self) -> u64 {
                let neg_rep = ((!self as u64) << 1) | 1;
                let pos_rep = (self as u64) << 1;
                if USE_BRANCHES {
                    if self < 0 {
                        neg_rep
                    } else {
                        pos_rep
                    }
                } else {
                    let neg_mask = ((self >= 0) as i64 - 1) as u64;
                    (neg_rep & neg_mask) | (pos_rep & !neg_mask)
                }
            }
        }
        #[cfg(test)]
        proptest!{
            #[test]
            fn $test_name(x: $ty) {
                println!("\ntesting {}", x);
                test_fits64(x);
            }
        }
    };
}
define_ifits!(i8, u8, fits_i8);
define_ifits!(i16, u16, fits_i16);
define_ifits!(i32, u32, fits_i32);
define_ifits!(i64, u64, fits_i64);
define_ifits!(isize, usize, fits_isize);

/// A set type that can store any type that fits in a `u64`.  This set
/// type is very space-efficient in storing small or closely spaced
/// integers, while not being bad at storing large integers.
///
/// **Major caveat** The `Set64` type defines iterators (`drain()` and
/// `iter()`) that iterate over `T` rather than `&T`.  This is a break
/// with standard libray convention, and can be annoying if you are
/// translating code from `HashSet` to `Set64`.  The motivation for
/// this is several-fold:
///
/// 1. `Set64` does not store `T` directly in its data structures
/// (which would waste space), so there is no reference to the data to
/// take.  This does not make it impossible, but does mean we would
/// have to fabricate a `T` and return a reference to it, which is
/// awkward and ugly.
///
/// 2. There is no inefficiency involved in returning `T`, since it is
/// necessarily no larger than a pointer.
///
/// # Examples
///
/// ```
/// use tinyset::Set64;
///
/// let a: Set64<char> = "Hello world".chars().collect();
///
/// for x in "Hello world".chars() {
///     assert!(a.contains(&x));
/// }
/// for x in a {
///     assert!("Hello world".contains(x));
/// }
/// ```
///
/// # Storage details
///
/// Internally a `Set64` is identical to a [SetU64], so read there for
/// details.  In short, small sets are the size of a pointer with no
/// heap storage.  Densely packed sets are around a bit per member.
/// Intermediate sets have intermediate storage.  The worst case
/// scenario is large integers widely spaced apart, in which case the
/// storage is similar to a [`std::collections::HashSet`].
#[derive(Debug, Clone)]
pub struct Set64<T: Fits64>(crate::setu64::SetU64, PhantomData<T>);

impl<T: Fits64> Default for Set64<T> {
    /// Creates an empty set..
    fn default() -> Self {
        Set64(crate::setu64::SetU64::new(), PhantomData)
    }
}

impl<T: Fits64> Set64<T> {
    /// Creates an empty set..
    pub fn new() -> Self {
        Self::default()
    }
    /// Creates an empty set with the specified capacity.
    pub fn with_capacity(_cap: usize) -> Self {
        Self::new()
    }
    /// Adds a value to the set.
    ///
    /// If the set did not have this value present, `true` is returned.
    ///
    /// If the set did have this value present, `false` is returned.
    pub fn insert(&mut self, elem: T) -> bool {
        self.0.insert(elem.to_u64())
    }
    /// Returns the number of elements in the set.
    pub fn len(&self) -> usize {
        self.0.len()
    }
    /// Returns true if the set contains a value.
    pub fn contains<R: std::borrow::Borrow<T>>(&self, value: R) -> bool {
        let x = value.borrow().clone().to_u64();
        self.0.contains(x)
    }
    /// Removes an element, and returns true if that element was present.
    pub fn remove(&mut self, value: &T) -> bool {
        let x = value.clone().to_u64();
        self.0.remove(x)
    }
    /// Iterate
    pub fn iter<'a>(&'a self) -> impl Iterator<Item=T> + 'a {
        self.0.iter().map(|x| unsafe { T::from_u64(x) })
    }
    /// Drain
    pub fn drain<'a>(&'a mut self) -> impl Iterator<Item=T> + 'a {
        self.0.drain().map(|x| unsafe { T::from_u64(x) })
    }
}

impl<T: Fits64> PartialEq for Set64<T> {
    fn eq(&self, other: &Set64<T>) -> bool {
        if self.len() != other.len() {
            return false;
        }
        for k in other.iter() {
            if !self.contains(k) {
                return false;
            }
        }
        true
    }
}
impl<T: Fits64> Eq for Set64<T> {}

impl<T: Fits64> std::hash::Hash for Set64<T> {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        let mut membs: Vec<u64> = self.iter().map(|i| i.to_u64()).collect();
        membs.sort();
        for memb in membs {
            memb.hash(state);
        }
    }
}

impl<T: Fits64> std::iter::FromIterator<T> for Set64<T> {
    fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> Self {
        let iter = iter.into_iter();
        let (sz,_) = iter.size_hint();
        let mut c = Set64::with_capacity(sz);
        for i in iter {
            c.insert(i);
        }
        c
    }
}

/// An iterator.
pub struct IntoIter<T: Fits64>( crate::setu64::IntoIter, PhantomData<T> );

impl<T: Fits64> Iterator for IntoIter<T> {
    type Item = T;
    #[inline]
    fn next(&mut self) -> Option<T> {
        self.0.next().map(|x| unsafe { T::from_u64(x) })
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
    #[inline]
    fn count(self) -> usize {
        self.0.count()
    }
    #[inline]
    fn last(self) -> Option<T> {
        self.0.last().map(|x| unsafe { T::from_u64(x) })
    }
}

impl<T: Fits64> IntoIterator for Set64<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> IntoIter<T> {
        IntoIter(self.0.into_iter(), PhantomData)
    }
}

impl<'a, 'b, T: Fits64> std::ops::Sub<&'b Set64<T>> for &'a Set64<T> {
    type Output = Set64<T>;

    /// Returns the difference of `self` and `rhs` as a new `Set64<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tinyset::Set64;
    ///
    /// let a: Set64<u32> = vec![1, 2, 3].into_iter().collect();
    /// let b: Set64<u32> = vec![3, 4, 5].into_iter().collect();
    ///
    /// let set = &a - &b;
    ///
    /// let mut i = 0;
    /// let expected = [1, 2];
    /// for x in set {
    ///     assert!(expected.contains(&x));
    ///     i += 1;
    /// }
    /// assert_eq!(i, expected.len());
    /// ```
    fn sub(self, rhs: &Set64<T>) -> Set64<T> {
        let mut s = Set64::with_capacity(self.len());
        for v in self.iter() {
            if !rhs.contains(&v) {
                s.insert(v);
            }
        }
        s
    }
}

impl<T: Fits64> Extend<T> for Set64<T> {
    /// Adds a bunch of elements to the set
    ///
    /// # Examples
    ///
    /// ```
    /// use tinyset::Set64;
    ///
    /// let mut a: Set64<u32> = vec![1, 2, 3].into_iter().collect();
    /// a.extend(vec![3, 4, 5]);
    ///
    /// let mut i = 0;
    /// let expected = [1, 2, 3, 4, 5];
    /// for x in a {
    ///     assert!(expected.contains(&x));
    ///     i += 1;
    /// }
    /// assert_eq!(i, expected.len());
    /// ```
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        let iter = iter.into_iter();
        for i in iter {
            self.insert(i);
        }
    }
}

impl<'a, 'b, T: Fits64> std::ops::BitOr<&'b Set64<T>> for &'a Set64<T> {
    type Output = Set64<T>;

    /// Returns the union of `self` and `rhs` as a new `Set64<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tinyset::Set64;
    ///
    /// let a: Set64<u32> = vec![1, 2, 3].into_iter().collect();
    /// let b: Set64<u32> = vec![3, 4, 5].into_iter().collect();
    ///
    /// let set = &a | &b;
    ///
    /// let mut i = 0;
    /// let expected = [1, 2, 3, 4, 5];
    /// for x in set {
    ///     assert!(expected.contains(&x));
    ///     i += 1;
    /// }
    /// assert_eq!(i, expected.len());
    /// ```
    fn bitor(self, rhs: &Set64<T>) -> Set64<T> {
        let mut s: Set64<T> = Set64::with_capacity(self.len() + rhs.len());
        for x in self.iter() {
            s.insert(x);
        }
        for x in rhs.iter() {
            s.insert(x);
        }
        s
    }
}

impl<T: Fits64 + Eq + Ord + std::fmt::Debug + std::fmt::Display> crate::copyset::CopySet for Set64<T> {
    type Item = T;
    type Iter = IntoIter<T>;
    fn ins(&mut self, e: Self::Item) -> bool {
        self.insert(e)
    }
    fn rem(&mut self, e: Self::Item) -> bool {
        self.remove(&e)
    }
    fn con(&self, e: Self::Item) -> bool {
        self.contains(&e)
    }
    fn vec(&self) -> Vec<Self::Item> {
        self.iter().collect()
    }
    fn ln(&self) -> usize {
        self.len()
    }
    fn it(self) -> Self::Iter {
        self.into_iter()
    }
}

#[cfg(test)]
proptest!{
    #[test]
    fn copycheck_random_sets(slice in prop::collection::vec(1u64..5, 1usize..10)) {
        crate::copyset::check_set::<Set64<u64>>(&slice);
    }
    #[test]
    fn copycheck_medium_sets(slice in prop::collection::vec(1u64..255, 1usize..100)) {
        crate::copyset::check_set::<Set64<u64>>(&slice);
    }
    #[test]
    fn copycheck_big_sets(slice: Vec<u64>) {
        crate::copyset::check_set::<Set64<u64>>(&slice);
    }
    #[test]
    fn copycheck_u8_sets(slice: Vec<u8>) {
        crate::copyset::check_set::<Set64<u8>>(&slice);
    }
}