1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
/* ***********************************************************
 * This file was automatically generated on 2024-02-27.      *
 *                                                           *
 * Rust Bindings Version 2.0.21                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Controls up to 2048 RGB(W) LEDs.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/LEDStripV2_Bricklet_Rust.html).
use crate::{
    byte_converter::*,
    converting_callback_receiver::ConvertingCallbackReceiver,
    converting_receiver::{BrickletRecvTimeoutError, ConvertingReceiver},
    device::*,
    ip_connection::GetRequestSender,
    low_level_traits::*,
};
pub enum LedStripV2BrickletFunction {
    SetLedValuesLowLevel,
    GetLedValuesLowLevel,
    SetFrameDuration,
    GetFrameDuration,
    GetSupplyVoltage,
    SetClockFrequency,
    GetClockFrequency,
    SetChipType,
    GetChipType,
    SetChannelMapping,
    GetChannelMapping,
    SetFrameStartedCallbackConfiguration,
    GetFrameStartedCallbackConfiguration,
    GetSpitfpErrorCount,
    SetBootloaderMode,
    GetBootloaderMode,
    SetWriteFirmwarePointer,
    WriteFirmware,
    SetStatusLedConfig,
    GetStatusLedConfig,
    GetChipTemperature,
    Reset,
    WriteUid,
    ReadUid,
    GetIdentity,
    CallbackFrameStarted,
}
impl From<LedStripV2BrickletFunction> for u8 {
    fn from(fun: LedStripV2BrickletFunction) -> Self {
        match fun {
            LedStripV2BrickletFunction::SetLedValuesLowLevel => 1,
            LedStripV2BrickletFunction::GetLedValuesLowLevel => 2,
            LedStripV2BrickletFunction::SetFrameDuration => 3,
            LedStripV2BrickletFunction::GetFrameDuration => 4,
            LedStripV2BrickletFunction::GetSupplyVoltage => 5,
            LedStripV2BrickletFunction::SetClockFrequency => 7,
            LedStripV2BrickletFunction::GetClockFrequency => 8,
            LedStripV2BrickletFunction::SetChipType => 9,
            LedStripV2BrickletFunction::GetChipType => 10,
            LedStripV2BrickletFunction::SetChannelMapping => 11,
            LedStripV2BrickletFunction::GetChannelMapping => 12,
            LedStripV2BrickletFunction::SetFrameStartedCallbackConfiguration => 13,
            LedStripV2BrickletFunction::GetFrameStartedCallbackConfiguration => 14,
            LedStripV2BrickletFunction::GetSpitfpErrorCount => 234,
            LedStripV2BrickletFunction::SetBootloaderMode => 235,
            LedStripV2BrickletFunction::GetBootloaderMode => 236,
            LedStripV2BrickletFunction::SetWriteFirmwarePointer => 237,
            LedStripV2BrickletFunction::WriteFirmware => 238,
            LedStripV2BrickletFunction::SetStatusLedConfig => 239,
            LedStripV2BrickletFunction::GetStatusLedConfig => 240,
            LedStripV2BrickletFunction::GetChipTemperature => 242,
            LedStripV2BrickletFunction::Reset => 243,
            LedStripV2BrickletFunction::WriteUid => 248,
            LedStripV2BrickletFunction::ReadUid => 249,
            LedStripV2BrickletFunction::GetIdentity => 255,
            LedStripV2BrickletFunction::CallbackFrameStarted => 6,
        }
    }
}
pub const LED_STRIP_V2_BRICKLET_CHIP_TYPE_WS2801: u16 = 2801;
pub const LED_STRIP_V2_BRICKLET_CHIP_TYPE_WS2811: u16 = 2811;
pub const LED_STRIP_V2_BRICKLET_CHIP_TYPE_WS2812: u16 = 2812;
pub const LED_STRIP_V2_BRICKLET_CHIP_TYPE_LPD8806: u16 = 8806;
pub const LED_STRIP_V2_BRICKLET_CHIP_TYPE_APA102: u16 = 102;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RGB: u8 = 6;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RBG: u8 = 9;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BRG: u8 = 33;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BGR: u8 = 36;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GRB: u8 = 18;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GBR: u8 = 24;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RGBW: u8 = 27;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RGWB: u8 = 30;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RBGW: u8 = 39;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RBWG: u8 = 45;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RWGB: u8 = 54;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RWBG: u8 = 57;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GRWB: u8 = 78;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GRBW: u8 = 75;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GBWR: u8 = 108;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GBRW: u8 = 99;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GWBR: u8 = 120;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GWRB: u8 = 114;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BRGW: u8 = 135;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BRWG: u8 = 141;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BGRW: u8 = 147;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BGWR: u8 = 156;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BWRG: u8 = 177;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BWGR: u8 = 180;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WRBG: u8 = 201;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WRGB: u8 = 198;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WGBR: u8 = 216;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WGRB: u8 = 210;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WBGR: u8 = 228;
pub const LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WBRG: u8 = 225;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER: u8 = 0;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE: u8 = 1;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT: u8 = 2;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT: u8 = 3;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT: u8 = 4;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_OK: u8 = 0;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE: u8 = 1;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE: u8 = 2;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT: u8 = 3;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT: u8 = 4;
pub const LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH: u8 = 5;
pub const LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_OFF: u8 = 0;
pub const LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_ON: u8 = 1;
pub const LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS: u8 = 3;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SetLedValuesLowLevel {}
impl FromByteSlice for SetLedValuesLowLevel {
    fn bytes_expected() -> usize { 0 }
    fn from_le_byte_slice(_bytes: &[u8]) -> SetLedValuesLowLevel { SetLedValuesLowLevel {} }
}
impl LowLevelWrite<SetLedValuesResult> for SetLedValuesLowLevel {
    fn ll_message_written(&self) -> usize { 58 }

    fn get_result(&self) -> SetLedValuesResult { SetLedValuesResult {} }
}

#[derive(Clone, Copy)]
pub struct LedValuesLowLevel {
    pub value_length: u16,
    pub value_chunk_offset: u16,
    pub value_chunk_data: [u8; 60],
}
impl FromByteSlice for LedValuesLowLevel {
    fn bytes_expected() -> usize { 64 }
    fn from_le_byte_slice(bytes: &[u8]) -> LedValuesLowLevel {
        LedValuesLowLevel {
            value_length: <u16>::from_le_byte_slice(&bytes[0..2]),
            value_chunk_offset: <u16>::from_le_byte_slice(&bytes[2..4]),
            value_chunk_data: <[u8; 60]>::from_le_byte_slice(&bytes[4..64]),
        }
    }
}
impl LowLevelRead<u8, LedValuesResult> for LedValuesLowLevel {
    fn ll_message_length(&self) -> usize { self.value_length as usize }

    fn ll_message_chunk_offset(&self) -> usize { self.value_chunk_offset as usize }

    fn ll_message_chunk_data(&self) -> &[u8] { &self.value_chunk_data }

    fn get_result(&self) -> LedValuesResult { LedValuesResult {} }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SetLedValuesResult {}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct LedValuesResult {}

/// Controls up to 2048 RGB(W) LEDs
#[derive(Clone)]
pub struct LedStripV2Bricklet {
    device: Device,
}
impl LedStripV2Bricklet {
    pub const DEVICE_IDENTIFIER: u16 = 2103;
    pub const DEVICE_DISPLAY_NAME: &'static str = "LED Strip Bricklet 2.0";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> LedStripV2Bricklet {
        let mut result = LedStripV2Bricklet { device: Device::new([2, 0, 0], uid, req_sender, 2) };
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::SetLedValuesLowLevel) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetLedValuesLowLevel) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::SetFrameDuration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetFrameDuration) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetSupplyVoltage) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::SetClockFrequency) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetClockFrequency) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::SetChipType) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetChipType) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::SetChannelMapping) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetChannelMapping) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::SetFrameStartedCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetFrameStartedCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetSpitfpErrorCount) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::SetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::SetWriteFirmwarePointer) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::WriteFirmware) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::SetStatusLedConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetStatusLedConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetChipTemperature) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::WriteUid) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::ReadUid) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(LedStripV2BrickletFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::led_strip_v2_bricklet::LedStripV2Bricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::led_strip_v2_bricklet::LedStripV2Bricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: LedStripV2BrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(
        &mut self,
        fun: LedStripV2BrickletFunction,
        response_expected: bool,
    ) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is triggered directly after a new frame render is started.
    /// The parameter is the number of LEDs in that frame.
    ///
    /// You should send the data for the next frame directly after this receiver
    /// was triggered.
    ///
    /// For an explanation of the general approach see [`set_led_values`].
    ///
    /// [`set_led_values`]: #method.set_led_values
    pub fn get_frame_started_callback_receiver(&self) -> ConvertingCallbackReceiver<u16> {
        self.device.get_callback_receiver(u8::from(LedStripV2BrickletFunction::CallbackFrameStarted))
    }

    /// Sets the RGB(W) values for the LEDs starting from *index*.
    /// You can set at most 2048 RGB values or 1536 RGBW values (6144 byte each).
    ///
    /// To make the colors show correctly you need to configure the chip type
    /// (see [`set_chip_type`]) and a channel mapping (see [`set_channel_mapping`])
    /// according to the connected LEDs.
    ///
    /// If the channel mapping has 3 colors, you need to give the data in the sequence
    /// RGBRGBRGB... if the channel mapping has 4 colors you need to give data in the
    /// sequence RGBWRGBWRGBW...
    ///
    /// The data is double buffered and the colors will be transfered to the
    /// LEDs when the next frame duration ends (see [`set_frame_duration`]).
    ///
    /// Generic approach:
    ///
    /// * Set the frame duration to a value that represents the number of frames per
    ///   second you want to achieve.
    /// * Set all of the LED colors for one frame.
    /// * Wait for the [`get_frame_started_callback_receiver`] receiver.
    /// * Set all of the LED colors for next frame.
    /// * Wait for the [`get_frame_started_callback_receiver`] receiver.
    /// * And so on.
    ///
    /// This approach ensures that you can change the LED colors with a fixed frame rate.
    pub fn set_led_values_low_level(
        &self,
        index: u16,
        value_length: u16,
        value_chunk_offset: u16,
        value_chunk_data: [u8; 58],
    ) -> ConvertingReceiver<SetLedValuesLowLevel> {
        let mut payload = vec![0; 64];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(index));
        payload[2..4].copy_from_slice(&<u16>::to_le_byte_vec(value_length));
        payload[4..6].copy_from_slice(&<u16>::to_le_byte_vec(value_chunk_offset));
        payload[6..64].copy_from_slice(&<[u8; 58]>::to_le_byte_vec(value_chunk_data));

        self.device.set(u8::from(LedStripV2BrickletFunction::SetLedValuesLowLevel), payload)
    }

    /// Sets the RGB(W) values for the LEDs starting from *index*.
    /// You can set at most 2048 RGB values or 1536 RGBW values (6144 byte each).
    ///
    /// To make the colors show correctly you need to configure the chip type
    /// (see [`set_chip_type`]) and a channel mapping (see [`set_channel_mapping`])
    /// according to the connected LEDs.
    ///
    /// If the channel mapping has 3 colors, you need to give the data in the sequence
    /// RGBRGBRGB... if the channel mapping has 4 colors you need to give data in the
    /// sequence RGBWRGBWRGBW...
    ///
    /// The data is double buffered and the colors will be transfered to the
    /// LEDs when the next frame duration ends (see [`set_frame_duration`]).
    ///
    /// Generic approach:
    ///
    /// * Set the frame duration to a value that represents the number of frames per
    ///   second you want to achieve.
    /// * Set all of the LED colors for one frame.
    /// * Wait for the [`get_frame_started_callback_receiver`] receiver.
    /// * Set all of the LED colors for next frame.
    /// * Wait for the [`get_frame_started_callback_receiver`] receiver.
    /// * And so on.
    ///
    /// This approach ensures that you can change the LED colors with a fixed frame rate.
    pub fn set_led_values(&self, index: u16, value: &[u8]) -> Result<(), BrickletRecvTimeoutError> {
        let _ll_result = self.device.set_high_level(0, value, 65535, 58, &mut |length: usize, chunk_offset: usize, chunk: &[u8]| {
            let chunk_length = chunk.len() as u16;
            let mut chunk_array = [<u8>::default(); 58];
            chunk_array[0..chunk_length as usize].copy_from_slice(&chunk);

            let result = self.set_led_values_low_level(index, length as u16, chunk_offset as u16, chunk_array).recv();
            if let Err(BrickletRecvTimeoutError::SuccessButResponseExpectedIsDisabled) = result {
                Ok(Default::default())
            } else {
                result
            }
        })?;
        Ok(())
    }

    /// Returns *length* RGB(W) values starting from the
    /// given *index*.
    ///
    /// If the channel mapping has 3 colors, you will get the data in the sequence
    /// RGBRGBRGB... if the channel mapping has 4 colors you will get the data in the
    /// sequence RGBWRGBWRGBW...
    /// (assuming you start at an index divisible by 3 (RGB) or 4 (RGBW)).
    pub fn get_led_values_low_level(&self, index: u16, length: u16) -> ConvertingReceiver<LedValuesLowLevel> {
        let mut payload = vec![0; 4];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(index));
        payload[2..4].copy_from_slice(&<u16>::to_le_byte_vec(length));

        self.device.get(u8::from(LedStripV2BrickletFunction::GetLedValuesLowLevel), payload)
    }

    /// Returns *length* RGB(W) values starting from the
    /// given *index*.
    ///
    /// If the channel mapping has 3 colors, you will get the data in the sequence
    /// RGBRGBRGB... if the channel mapping has 4 colors you will get the data in the
    /// sequence RGBWRGBWRGBW...
    /// (assuming you start at an index divisible by 3 (RGB) or 4 (RGBW)).
    pub fn get_led_values(&self, index: u16, length: u16) -> Result<Vec<u8>, BrickletRecvTimeoutError> {
        let ll_result = self.device.get_high_level(1, &mut || self.get_led_values_low_level(index, length).recv())?;
        Ok(ll_result.0)
    }

    /// Sets the frame duration.
    ///
    /// Example: If you want to achieve 20 frames per second, you should
    /// set the frame duration to 50ms (50ms * 20 = 1 second).
    ///
    /// For an explanation of the general approach see [`set_led_values`].
    ///
    /// Default value: 100ms (10 frames per second).
    pub fn set_frame_duration(&self, duration: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(duration));

        self.device.set(u8::from(LedStripV2BrickletFunction::SetFrameDuration), payload)
    }

    /// Returns the frame duration as set by [`set_frame_duration`].
    pub fn get_frame_duration(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetFrameDuration), payload)
    }

    /// Returns the current supply voltage of the LEDs.
    pub fn get_supply_voltage(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetSupplyVoltage), payload)
    }

    /// Sets the frequency of the clock.
    ///
    /// The Bricklet will choose the nearest achievable frequency, which may
    /// be off by a few Hz. You can get the exact frequency that is used by
    /// calling [`get_clock_frequency`].
    ///
    /// If you have problems with flickering LEDs, they may be bits flipping. You
    /// can fix this by either making the connection between the LEDs and the
    /// Bricklet shorter or by reducing the frequency.
    ///
    /// With a decreasing frequency your maximum frames per second will decrease
    /// too.
    pub fn set_clock_frequency(&self, frequency: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(frequency));

        self.device.set(u8::from(LedStripV2BrickletFunction::SetClockFrequency), payload)
    }

    /// Returns the currently used clock frequency as set by [`set_clock_frequency`].
    pub fn get_clock_frequency(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetClockFrequency), payload)
    }

    /// Sets the type of the LED driver chip. We currently support the chips
    ///
    /// * WS2801,
    /// * WS2811,
    /// * WS2812 / SK6812 / NeoPixel RGB,
    /// * SK6812RGBW / NeoPixel RGBW (Chip Type = WS2812),
    /// * WS2813 / WS2815 (Chip Type = WS2812)
    /// * LPD8806 and
    /// * APA102 / DotStar.
    ///
    /// Associated constants:
    /// * LED_STRIP_V2_BRICKLET_CHIP_TYPE_WS2801
    ///	* LED_STRIP_V2_BRICKLET_CHIP_TYPE_WS2811
    ///	* LED_STRIP_V2_BRICKLET_CHIP_TYPE_WS2812
    ///	* LED_STRIP_V2_BRICKLET_CHIP_TYPE_LPD8806
    ///	* LED_STRIP_V2_BRICKLET_CHIP_TYPE_APA102
    pub fn set_chip_type(&self, chip: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(chip));

        self.device.set(u8::from(LedStripV2BrickletFunction::SetChipType), payload)
    }

    /// Returns the currently used chip type as set by [`set_chip_type`].
    ///
    /// Associated constants:
    /// * LED_STRIP_V2_BRICKLET_CHIP_TYPE_WS2801
    ///	* LED_STRIP_V2_BRICKLET_CHIP_TYPE_WS2811
    ///	* LED_STRIP_V2_BRICKLET_CHIP_TYPE_WS2812
    ///	* LED_STRIP_V2_BRICKLET_CHIP_TYPE_LPD8806
    ///	* LED_STRIP_V2_BRICKLET_CHIP_TYPE_APA102
    pub fn get_chip_type(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetChipType), payload)
    }

    /// Sets the channel mapping for the connected LEDs.
    ///
    /// If the mapping has 4 colors, the function [`set_led_values`] expects 4
    /// values per pixel and if the mapping has 3 colors it expects 3 values per pixel.
    ///
    /// The function always expects the order RGB(W). The connected LED driver chips
    /// might have their 3 or 4 channels in a different order. For example, the WS2801
    /// chips typically use BGR order, then WS2812 chips typically use GRB order and
    /// the APA102 chips typically use WBGR order.
    ///
    /// The APA102 chips are special. They have three 8-bit channels for RGB
    /// and an additional 5-bit channel for the overall brightness of the RGB LED
    /// making them 4-channel chips. Internally the brightness channel is the first
    /// channel, therefore one of the Wxyz channel mappings should be used. Then
    /// the W channel controls the brightness.
    ///
    /// Associated constants:
    /// * LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RGB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RBG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BRG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BGR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GRB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GBR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RGBW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RGWB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RBGW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RBWG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RWGB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RWBG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GRWB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GRBW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GBWR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GBRW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GWBR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GWRB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BRGW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BRWG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BGRW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BGWR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BWRG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BWGR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WRBG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WRGB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WGBR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WGRB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WBGR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WBRG
    pub fn set_channel_mapping(&self, mapping: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(mapping));

        self.device.set(u8::from(LedStripV2BrickletFunction::SetChannelMapping), payload)
    }

    /// Returns the currently used channel mapping as set by [`set_channel_mapping`].
    ///
    /// Associated constants:
    /// * LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RGB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RBG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BRG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BGR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GRB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GBR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RGBW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RGWB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RBGW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RBWG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RWGB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_RWBG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GRWB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GRBW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GBWR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GBRW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GWBR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_GWRB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BRGW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BRWG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BGRW
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BGWR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BWRG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_BWGR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WRBG
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WRGB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WGBR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WGRB
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WBGR
    ///	* LED_STRIP_V2_BRICKLET_CHANNEL_MAPPING_WBRG
    pub fn get_channel_mapping(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetChannelMapping), payload)
    }

    /// Enables/disables the [`get_frame_started_callback_receiver`] receiver.
    pub fn set_frame_started_callback_configuration(&self, enable: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(enable));

        self.device.set(u8::from(LedStripV2BrickletFunction::SetFrameStartedCallbackConfiguration), payload)
    }

    /// Returns the configuration as set by
    /// [`set_frame_started_callback_configuration`].
    pub fn get_frame_started_callback_configuration(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetFrameStartedCallbackConfiguration), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Bricklet side. All
    /// Bricks have a similar function that returns the errors on the Brick side.
    pub fn get_spitfp_error_count(&self) -> ConvertingReceiver<SpitfpErrorCount> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetSpitfpErrorCount), payload)
    }

    /// Sets the bootloader mode and returns the status after the requested
    /// mode change was instigated.
    ///
    /// You can change from bootloader mode to firmware mode and vice versa. A change
    /// from bootloader mode to firmware mode will only take place if the entry function,
    /// device identifier and CRC are present and correct.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// Associated constants:
    /// * LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_OK
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
    pub fn set_bootloader_mode(&self, mode: u8) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(mode));

        self.device.get(u8::from(LedStripV2BrickletFunction::SetBootloaderMode), payload)
    }

    /// Returns the current bootloader mode, see [`set_bootloader_mode`].
    ///
    /// Associated constants:
    /// * LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* LED_STRIP_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    pub fn get_bootloader_mode(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetBootloaderMode), payload)
    }

    /// Sets the firmware pointer for [`write_firmware`]. The pointer has
    /// to be increased by chunks of size 64. The data is written to flash
    /// every 4 chunks (which equals to one page of size 256).
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn set_write_firmware_pointer(&self, pointer: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(pointer));

        self.device.set(u8::from(LedStripV2BrickletFunction::SetWriteFirmwarePointer), payload)
    }

    /// Writes 64 Bytes of firmware at the position as written by
    /// [`set_write_firmware_pointer`] before. The firmware is written
    /// to flash every 4 chunks.
    ///
    /// You can only write firmware in bootloader mode.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn write_firmware(&self, data: [u8; 64]) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 64];
        payload[0..64].copy_from_slice(&<[u8; 64]>::to_le_byte_vec(data));

        self.device.get(u8::from(LedStripV2BrickletFunction::WriteFirmware), payload)
    }

    /// Sets the status LED configuration. By default the LED shows
    /// communication traffic between Brick and Bricklet, it flickers once
    /// for every 10 received data packets.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
    ///
    /// Associated constants:
    /// * LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn set_status_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(LedStripV2BrickletFunction::SetStatusLedConfig), payload)
    }

    /// Returns the configuration as set by [`set_status_led_config`]
    ///
    /// Associated constants:
    /// * LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* LED_STRIP_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn get_status_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetStatusLedConfig), payload)
    }

    /// Returns the temperature as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has bad
    /// accuracy. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Bricklet. All configurations
    /// will be lost.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(LedStripV2BrickletFunction::Reset), payload)
    }

    /// Writes a new UID into flash. If you want to set a new UID
    /// you have to decode the Base58 encoded UID string into an
    /// integer first.
    ///
    /// We recommend that you use Brick Viewer to change the UID.
    pub fn write_uid(&self, uid: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(uid));

        self.device.set(u8::from(LedStripV2BrickletFunction::WriteUid), payload)
    }

    /// Returns the current UID as an integer. Encode as
    /// Base58 to get the usual string version.
    pub fn read_uid(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::ReadUid), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port).
    /// A Bricklet connected to an [Isolator Bricklet](isolator_bricklet) is always at
    /// position 'z'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(LedStripV2BrickletFunction::GetIdentity), payload)
    }
}