1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
/* ***********************************************************
 * This file was automatically generated on 2024-02-27.      *
 *                                                           *
 * Rust Bindings Version 2.0.21                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Two relays to switch AC devices.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/IndustrialDualACRelay_Bricklet_Rust.html).
use crate::{
    byte_converter::*, converting_callback_receiver::ConvertingCallbackReceiver, converting_receiver::ConvertingReceiver, device::*,
    ip_connection::GetRequestSender,
};
pub enum IndustrialDualAcRelayBrickletFunction {
    SetValue,
    GetValue,
    SetChannelLedConfig,
    GetChannelLedConfig,
    SetMonoflop,
    GetMonoflop,
    SetSelectedValue,
    GetSpitfpErrorCount,
    SetBootloaderMode,
    GetBootloaderMode,
    SetWriteFirmwarePointer,
    WriteFirmware,
    SetStatusLedConfig,
    GetStatusLedConfig,
    GetChipTemperature,
    Reset,
    WriteUid,
    ReadUid,
    GetIdentity,
    CallbackMonoflopDone,
}
impl From<IndustrialDualAcRelayBrickletFunction> for u8 {
    fn from(fun: IndustrialDualAcRelayBrickletFunction) -> Self {
        match fun {
            IndustrialDualAcRelayBrickletFunction::SetValue => 1,
            IndustrialDualAcRelayBrickletFunction::GetValue => 2,
            IndustrialDualAcRelayBrickletFunction::SetChannelLedConfig => 3,
            IndustrialDualAcRelayBrickletFunction::GetChannelLedConfig => 4,
            IndustrialDualAcRelayBrickletFunction::SetMonoflop => 5,
            IndustrialDualAcRelayBrickletFunction::GetMonoflop => 6,
            IndustrialDualAcRelayBrickletFunction::SetSelectedValue => 8,
            IndustrialDualAcRelayBrickletFunction::GetSpitfpErrorCount => 234,
            IndustrialDualAcRelayBrickletFunction::SetBootloaderMode => 235,
            IndustrialDualAcRelayBrickletFunction::GetBootloaderMode => 236,
            IndustrialDualAcRelayBrickletFunction::SetWriteFirmwarePointer => 237,
            IndustrialDualAcRelayBrickletFunction::WriteFirmware => 238,
            IndustrialDualAcRelayBrickletFunction::SetStatusLedConfig => 239,
            IndustrialDualAcRelayBrickletFunction::GetStatusLedConfig => 240,
            IndustrialDualAcRelayBrickletFunction::GetChipTemperature => 242,
            IndustrialDualAcRelayBrickletFunction::Reset => 243,
            IndustrialDualAcRelayBrickletFunction::WriteUid => 248,
            IndustrialDualAcRelayBrickletFunction::ReadUid => 249,
            IndustrialDualAcRelayBrickletFunction::GetIdentity => 255,
            IndustrialDualAcRelayBrickletFunction::CallbackMonoflopDone => 7,
        }
    }
}
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_OFF: u8 = 0;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_ON: u8 = 1;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_SHOW_CHANNEL_STATUS: u8 = 3;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_BOOTLOADER: u8 = 0;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_FIRMWARE: u8 = 1;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT: u8 = 2;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT: u8 = 3;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT: u8 = 4;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_OK: u8 = 0;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE: u8 = 1;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE: u8 = 2;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT: u8 = 3;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT: u8 = 4;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH: u8 = 5;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_OFF: u8 = 0;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_ON: u8 = 1;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS: u8 = 3;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Value {
    pub channel0: bool,
    pub channel1: bool,
}
impl FromByteSlice for Value {
    fn bytes_expected() -> usize { 2 }
    fn from_le_byte_slice(bytes: &[u8]) -> Value {
        Value { channel0: <bool>::from_le_byte_slice(&bytes[0..1]), channel1: <bool>::from_le_byte_slice(&bytes[1..2]) }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Monoflop {
    pub value: bool,
    pub time: u32,
    pub time_remaining: u32,
}
impl FromByteSlice for Monoflop {
    fn bytes_expected() -> usize { 9 }
    fn from_le_byte_slice(bytes: &[u8]) -> Monoflop {
        Monoflop {
            value: <bool>::from_le_byte_slice(&bytes[0..1]),
            time: <u32>::from_le_byte_slice(&bytes[1..5]),
            time_remaining: <u32>::from_le_byte_slice(&bytes[5..9]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct MonoflopDoneEvent {
    pub channel: u8,
    pub value: bool,
}
impl FromByteSlice for MonoflopDoneEvent {
    fn bytes_expected() -> usize { 2 }
    fn from_le_byte_slice(bytes: &[u8]) -> MonoflopDoneEvent {
        MonoflopDoneEvent { channel: <u8>::from_le_byte_slice(&bytes[0..1]), value: <bool>::from_le_byte_slice(&bytes[1..2]) }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

/// Two relays to switch AC devices
#[derive(Clone)]
pub struct IndustrialDualAcRelayBricklet {
    device: Device,
}
impl IndustrialDualAcRelayBricklet {
    pub const DEVICE_IDENTIFIER: u16 = 2162;
    pub const DEVICE_DISPLAY_NAME: &'static str = "Industrial Dual AC Relay Bricklet";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> IndustrialDualAcRelayBricklet {
        let mut result = IndustrialDualAcRelayBricklet { device: Device::new([2, 0, 0], uid, req_sender, 0) };
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::SetValue) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::GetValue) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::SetChannelLedConfig) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::GetChannelLedConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::SetMonoflop) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::GetMonoflop) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::SetSelectedValue) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::GetSpitfpErrorCount) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::SetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::GetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::SetWriteFirmwarePointer) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::WriteFirmware) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::SetStatusLedConfig) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::GetStatusLedConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::GetChipTemperature) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::WriteUid) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::ReadUid) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDualAcRelayBrickletFunction::GetIdentity) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::industrial_dual_ac_relay_bricklet::IndustrialDualAcRelayBricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::industrial_dual_ac_relay_bricklet::IndustrialDualAcRelayBricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: IndustrialDualAcRelayBrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(
        &mut self,
        fun: IndustrialDualAcRelayBrickletFunction,
        response_expected: bool,
    ) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is triggered whenever a monoflop timer reaches 0. The
    /// parameters contain the relay and the current state of the relay
    /// (the state after the monoflop).
    pub fn get_monoflop_done_callback_receiver(&self) -> ConvertingCallbackReceiver<MonoflopDoneEvent> {
        self.device.get_callback_receiver(u8::from(IndustrialDualAcRelayBrickletFunction::CallbackMonoflopDone))
    }

    /// Sets the state of the relays, *true* means on and *false* means off.
    /// For example: (true, false) turns relay 0 on and relay 1 off.
    ///
    /// If you just want to set one of the relays and don't know the current state
    /// of the other relay, you can get the state with [`get_value`] or you
    /// can use [`set_selected_value`].
    ///
    /// All running monoflop timers will be aborted if this function is called.
    pub fn set_value(&self, channel0: bool, channel1: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(channel0));
        payload[1..2].copy_from_slice(&<bool>::to_le_byte_vec(channel1));

        self.device.set(u8::from(IndustrialDualAcRelayBrickletFunction::SetValue), payload)
    }

    /// Returns the state of the relays, *true* means on and *false* means off.
    pub fn get_value(&self) -> ConvertingReceiver<Value> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::GetValue), payload)
    }

    /// Each channel has a corresponding LED. You can turn the LED off, on or show a
    /// heartbeat. You can also set the LED to Channel Status. In this mode the
    /// LED is on if the channel is high and off otherwise.
    ///
    /// Associated constants:
    /// * INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_OFF
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_ON
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_SHOW_HEARTBEAT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_SHOW_CHANNEL_STATUS
    pub fn set_channel_led_config(&self, channel: u8, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(channel));
        payload[1..2].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(IndustrialDualAcRelayBrickletFunction::SetChannelLedConfig), payload)
    }

    /// Returns the channel LED configuration as set by [`set_channel_led_config`]
    ///
    /// Associated constants:
    /// * INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_OFF
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_ON
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_SHOW_HEARTBEAT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_CHANNEL_LED_CONFIG_SHOW_CHANNEL_STATUS
    pub fn get_channel_led_config(&self, channel: u8) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(channel));

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::GetChannelLedConfig), payload)
    }

    /// The first parameter can be 0 or 1 (relay 0 or relay 1). The second parameter
    /// is the desired state of the relay (*true* means on and *false* means off).
    /// The third parameter indicates the time that the relay should hold
    /// the state.
    ///
    /// If this function is called with the parameters (1, true, 1500):
    /// Relay 1 will turn on and in 1.5s it will turn off again.
    ///
    /// A monoflop can be used as a failsafe mechanism. For example: Lets assume you
    /// have a RS485 bus and a Industrial Dual AC Relay Bricklet connected to one of the
    /// slave stacks. You can now call this function every second, with a time parameter
    /// of two seconds. The relay will be on all the time. If now the RS485
    /// connection is lost, the relay will turn off in at most two seconds.
    pub fn set_monoflop(&self, channel: u8, value: bool, time: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 6];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(channel));
        payload[1..2].copy_from_slice(&<bool>::to_le_byte_vec(value));
        payload[2..6].copy_from_slice(&<u32>::to_le_byte_vec(time));

        self.device.set(u8::from(IndustrialDualAcRelayBrickletFunction::SetMonoflop), payload)
    }

    /// Returns (for the given relay) the current state and the time as set by
    /// [`set_monoflop`] as well as the remaining time until the state flips.
    ///
    /// If the timer is not running currently, the remaining time will be returned
    /// as 0.
    pub fn get_monoflop(&self, channel: u8) -> ConvertingReceiver<Monoflop> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(channel));

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::GetMonoflop), payload)
    }

    /// Sets the state of the selected relay, *true* means on and *false*
    /// means off.
    ///
    /// A running monoflop timer for the selected relay will be aborted if this function
    /// is called.
    ///
    /// The other relay remains untouched.
    pub fn set_selected_value(&self, channel: u8, value: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(channel));
        payload[1..2].copy_from_slice(&<bool>::to_le_byte_vec(value));

        self.device.set(u8::from(IndustrialDualAcRelayBrickletFunction::SetSelectedValue), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Bricklet side. All
    /// Bricks have a similar function that returns the errors on the Brick side.
    pub fn get_spitfp_error_count(&self) -> ConvertingReceiver<SpitfpErrorCount> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::GetSpitfpErrorCount), payload)
    }

    /// Sets the bootloader mode and returns the status after the requested
    /// mode change was instigated.
    ///
    /// You can change from bootloader mode to firmware mode and vice versa. A change
    /// from bootloader mode to firmware mode will only take place if the entry function,
    /// device identifier and CRC are present and correct.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// Associated constants:
    /// * INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_OK
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
    pub fn set_bootloader_mode(&self, mode: u8) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(mode));

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::SetBootloaderMode), payload)
    }

    /// Returns the current bootloader mode, see [`set_bootloader_mode`].
    ///
    /// Associated constants:
    /// * INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    pub fn get_bootloader_mode(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::GetBootloaderMode), payload)
    }

    /// Sets the firmware pointer for [`write_firmware`]. The pointer has
    /// to be increased by chunks of size 64. The data is written to flash
    /// every 4 chunks (which equals to one page of size 256).
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn set_write_firmware_pointer(&self, pointer: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(pointer));

        self.device.set(u8::from(IndustrialDualAcRelayBrickletFunction::SetWriteFirmwarePointer), payload)
    }

    /// Writes 64 Bytes of firmware at the position as written by
    /// [`set_write_firmware_pointer`] before. The firmware is written
    /// to flash every 4 chunks.
    ///
    /// You can only write firmware in bootloader mode.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn write_firmware(&self, data: [u8; 64]) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 64];
        payload[0..64].copy_from_slice(&<[u8; 64]>::to_le_byte_vec(data));

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::WriteFirmware), payload)
    }

    /// Sets the status LED configuration. By default the LED shows
    /// communication traffic between Brick and Bricklet, it flickers once
    /// for every 10 received data packets.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
    ///
    /// Associated constants:
    /// * INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn set_status_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(IndustrialDualAcRelayBrickletFunction::SetStatusLedConfig), payload)
    }

    /// Returns the configuration as set by [`set_status_led_config`]
    ///
    /// Associated constants:
    /// * INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* INDUSTRIAL_DUAL_AC_RELAY_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn get_status_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::GetStatusLedConfig), payload)
    }

    /// Returns the temperature as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has bad
    /// accuracy. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Bricklet. All configurations
    /// will be lost.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(IndustrialDualAcRelayBrickletFunction::Reset), payload)
    }

    /// Writes a new UID into flash. If you want to set a new UID
    /// you have to decode the Base58 encoded UID string into an
    /// integer first.
    ///
    /// We recommend that you use Brick Viewer to change the UID.
    pub fn write_uid(&self, uid: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(uid));

        self.device.set(u8::from(IndustrialDualAcRelayBrickletFunction::WriteUid), payload)
    }

    /// Returns the current UID as an integer. Encode as
    /// Base58 to get the usual string version.
    pub fn read_uid(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::ReadUid), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port).
    /// A Bricklet connected to an [Isolator Bricklet](isolator_bricklet) is always at
    /// position 'z'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDualAcRelayBrickletFunction::GetIdentity), payload)
    }
}