1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/* ***********************************************************
 * This file was automatically generated on 2024-02-27.      *
 *                                                           *
 * Rust Bindings Version 2.0.21                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Measures Voltage, Current, Energy, Real/Apparent/Reactive Power, Power Factor and Frequency.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/EnergyMonitor_Bricklet_Rust.html).
use crate::{
    byte_converter::*,
    converting_callback_receiver::ConvertingCallbackReceiver,
    converting_receiver::{BrickletRecvTimeoutError, ConvertingReceiver},
    device::*,
    ip_connection::GetRequestSender,
    low_level_traits::*,
};
pub enum EnergyMonitorBrickletFunction {
    GetEnergyData,
    ResetEnergy,
    GetWaveformLowLevel,
    GetTransformerStatus,
    SetTransformerCalibration,
    GetTransformerCalibration,
    CalibrateOffset,
    SetEnergyDataCallbackConfiguration,
    GetEnergyDataCallbackConfiguration,
    GetSpitfpErrorCount,
    SetBootloaderMode,
    GetBootloaderMode,
    SetWriteFirmwarePointer,
    WriteFirmware,
    SetStatusLedConfig,
    GetStatusLedConfig,
    GetChipTemperature,
    Reset,
    WriteUid,
    ReadUid,
    GetIdentity,
    CallbackEnergyData,
}
impl From<EnergyMonitorBrickletFunction> for u8 {
    fn from(fun: EnergyMonitorBrickletFunction) -> Self {
        match fun {
            EnergyMonitorBrickletFunction::GetEnergyData => 1,
            EnergyMonitorBrickletFunction::ResetEnergy => 2,
            EnergyMonitorBrickletFunction::GetWaveformLowLevel => 3,
            EnergyMonitorBrickletFunction::GetTransformerStatus => 4,
            EnergyMonitorBrickletFunction::SetTransformerCalibration => 5,
            EnergyMonitorBrickletFunction::GetTransformerCalibration => 6,
            EnergyMonitorBrickletFunction::CalibrateOffset => 7,
            EnergyMonitorBrickletFunction::SetEnergyDataCallbackConfiguration => 8,
            EnergyMonitorBrickletFunction::GetEnergyDataCallbackConfiguration => 9,
            EnergyMonitorBrickletFunction::GetSpitfpErrorCount => 234,
            EnergyMonitorBrickletFunction::SetBootloaderMode => 235,
            EnergyMonitorBrickletFunction::GetBootloaderMode => 236,
            EnergyMonitorBrickletFunction::SetWriteFirmwarePointer => 237,
            EnergyMonitorBrickletFunction::WriteFirmware => 238,
            EnergyMonitorBrickletFunction::SetStatusLedConfig => 239,
            EnergyMonitorBrickletFunction::GetStatusLedConfig => 240,
            EnergyMonitorBrickletFunction::GetChipTemperature => 242,
            EnergyMonitorBrickletFunction::Reset => 243,
            EnergyMonitorBrickletFunction::WriteUid => 248,
            EnergyMonitorBrickletFunction::ReadUid => 249,
            EnergyMonitorBrickletFunction::GetIdentity => 255,
            EnergyMonitorBrickletFunction::CallbackEnergyData => 10,
        }
    }
}
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER: u8 = 0;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE: u8 = 1;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT: u8 = 2;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT: u8 = 3;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT: u8 = 4;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_OK: u8 = 0;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE: u8 = 1;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE: u8 = 2;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT: u8 = 3;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT: u8 = 4;
pub const ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH: u8 = 5;
pub const ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_OFF: u8 = 0;
pub const ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_ON: u8 = 1;
pub const ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS: u8 = 3;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct EnergyData {
    pub voltage: i32,
    pub current: i32,
    pub energy: i32,
    pub real_power: i32,
    pub apparent_power: i32,
    pub reactive_power: i32,
    pub power_factor: u16,
    pub frequency: u16,
}
impl FromByteSlice for EnergyData {
    fn bytes_expected() -> usize { 28 }
    fn from_le_byte_slice(bytes: &[u8]) -> EnergyData {
        EnergyData {
            voltage: <i32>::from_le_byte_slice(&bytes[0..4]),
            current: <i32>::from_le_byte_slice(&bytes[4..8]),
            energy: <i32>::from_le_byte_slice(&bytes[8..12]),
            real_power: <i32>::from_le_byte_slice(&bytes[12..16]),
            apparent_power: <i32>::from_le_byte_slice(&bytes[16..20]),
            reactive_power: <i32>::from_le_byte_slice(&bytes[20..24]),
            power_factor: <u16>::from_le_byte_slice(&bytes[24..26]),
            frequency: <u16>::from_le_byte_slice(&bytes[26..28]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct WaveformLowLevel {
    pub waveform_chunk_offset: u16,
    pub waveform_chunk_data: [i16; 30],
}
impl FromByteSlice for WaveformLowLevel {
    fn bytes_expected() -> usize { 62 }
    fn from_le_byte_slice(bytes: &[u8]) -> WaveformLowLevel {
        WaveformLowLevel {
            waveform_chunk_offset: <u16>::from_le_byte_slice(&bytes[0..2]),
            waveform_chunk_data: <[i16; 30]>::from_le_byte_slice(&bytes[2..62]),
        }
    }
}
impl LowLevelRead<i16, WaveformResult> for WaveformLowLevel {
    fn ll_message_length(&self) -> usize { 1536 }

    fn ll_message_chunk_offset(&self) -> usize { self.waveform_chunk_offset as usize }

    fn ll_message_chunk_data(&self) -> &[i16] { &self.waveform_chunk_data }

    fn get_result(&self) -> WaveformResult { WaveformResult {} }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TransformerStatus {
    pub voltage_transformer_connected: bool,
    pub current_transformer_connected: bool,
}
impl FromByteSlice for TransformerStatus {
    fn bytes_expected() -> usize { 2 }
    fn from_le_byte_slice(bytes: &[u8]) -> TransformerStatus {
        TransformerStatus {
            voltage_transformer_connected: <bool>::from_le_byte_slice(&bytes[0..1]),
            current_transformer_connected: <bool>::from_le_byte_slice(&bytes[1..2]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TransformerCalibration {
    pub voltage_ratio: u16,
    pub current_ratio: u16,
    pub phase_shift: i16,
}
impl FromByteSlice for TransformerCalibration {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> TransformerCalibration {
        TransformerCalibration {
            voltage_ratio: <u16>::from_le_byte_slice(&bytes[0..2]),
            current_ratio: <u16>::from_le_byte_slice(&bytes[2..4]),
            phase_shift: <i16>::from_le_byte_slice(&bytes[4..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct EnergyDataCallbackConfiguration {
    pub period: u32,
    pub value_has_to_change: bool,
}
impl FromByteSlice for EnergyDataCallbackConfiguration {
    fn bytes_expected() -> usize { 5 }
    fn from_le_byte_slice(bytes: &[u8]) -> EnergyDataCallbackConfiguration {
        EnergyDataCallbackConfiguration {
            period: <u32>::from_le_byte_slice(&bytes[0..4]),
            value_has_to_change: <bool>::from_le_byte_slice(&bytes[4..5]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct EnergyDataEvent {
    pub voltage: i32,
    pub current: i32,
    pub energy: i32,
    pub real_power: i32,
    pub apparent_power: i32,
    pub reactive_power: i32,
    pub power_factor: u16,
    pub frequency: u16,
}
impl FromByteSlice for EnergyDataEvent {
    fn bytes_expected() -> usize { 28 }
    fn from_le_byte_slice(bytes: &[u8]) -> EnergyDataEvent {
        EnergyDataEvent {
            voltage: <i32>::from_le_byte_slice(&bytes[0..4]),
            current: <i32>::from_le_byte_slice(&bytes[4..8]),
            energy: <i32>::from_le_byte_slice(&bytes[8..12]),
            real_power: <i32>::from_le_byte_slice(&bytes[12..16]),
            apparent_power: <i32>::from_le_byte_slice(&bytes[16..20]),
            reactive_power: <i32>::from_le_byte_slice(&bytes[20..24]),
            power_factor: <u16>::from_le_byte_slice(&bytes[24..26]),
            frequency: <u16>::from_le_byte_slice(&bytes[26..28]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct WaveformResult {}

/// Measures Voltage, Current, Energy, Real/Apparent/Reactive Power, Power Factor and Frequency
#[derive(Clone)]
pub struct EnergyMonitorBricklet {
    device: Device,
}
impl EnergyMonitorBricklet {
    pub const DEVICE_IDENTIFIER: u16 = 2152;
    pub const DEVICE_DISPLAY_NAME: &'static str = "Energy Monitor Bricklet";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> EnergyMonitorBricklet {
        let mut result = EnergyMonitorBricklet { device: Device::new([2, 0, 0], uid, req_sender, 1) };
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetEnergyData) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::ResetEnergy) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetWaveformLowLevel) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetTransformerStatus) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::SetTransformerCalibration) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetTransformerCalibration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::CalibrateOffset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::SetEnergyDataCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetEnergyDataCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetSpitfpErrorCount) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::SetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::SetWriteFirmwarePointer) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::WriteFirmware) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::SetStatusLedConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetStatusLedConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetChipTemperature) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::WriteUid) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::ReadUid) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(EnergyMonitorBrickletFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::energy_monitor_bricklet::EnergyMonitorBricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::energy_monitor_bricklet::EnergyMonitorBricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: EnergyMonitorBrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(
        &mut self,
        fun: EnergyMonitorBrickletFunction,
        response_expected: bool,
    ) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is triggered periodically according to the configuration set by
    /// [`set_energy_data_callback_configuration`].
    ///
    /// The parameters are the same as [`get_energy_data`].
    ///
    /// [`get_energy_data`]: #method.get_energy_data
    /// [`set_energy_data_callback_configuration`]: #method.set_energy_data_callback_configuration
    pub fn get_energy_data_callback_receiver(&self) -> ConvertingCallbackReceiver<EnergyDataEvent> {
        self.device.get_callback_receiver(u8::from(EnergyMonitorBrickletFunction::CallbackEnergyData))
    }

    /// Returns all of the measurements that are done by the Energy Monitor Bricklet.
    ///
    /// * Voltage RMS
    /// * Current RMS
    /// * Energy (integrated over time)
    /// * Real Power
    /// * Apparent Power
    /// * Reactive Power
    /// * Power Factor
    /// * Frequency (AC Frequency of the mains voltage)
    ///
    /// The frequency is recalculated every 6 seconds.
    ///
    /// All other values are integrated over 10 zero-crossings of the voltage sine wave.
    /// With a standard AC mains voltage frequency of 50Hz this results in a 5 measurements
    /// per second (or an integration time of 200ms per measurement).
    ///
    /// If no voltage transformer is connected, the Bricklet will use the current waveform
    /// to calculate the frequency and it will use an integration time of
    /// 10 zero-crossings of the current waveform.
    pub fn get_energy_data(&self) -> ConvertingReceiver<EnergyData> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetEnergyData), payload)
    }

    /// Sets the energy value (see [`get_energy_data`]) back to 0Wh.
    pub fn reset_energy(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(EnergyMonitorBrickletFunction::ResetEnergy), payload)
    }

    /// Returns a snapshot of the voltage and current waveform. The values
    /// in the returned array alternate between voltage and current. The data from
    /// one getter call contains 768 data points for voltage and current, which
    /// correspond to about 3 full sine waves.
    ///
    /// The voltage is given with a resolution of 100mV and the current is given
    /// with a resolution of 10mA.
    ///
    /// This data is meant to be used for a non-realtime graphical representation of
    /// the voltage and current waveforms.
    pub fn get_waveform_low_level(&self) -> ConvertingReceiver<WaveformLowLevel> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetWaveformLowLevel), payload)
    }

    /// Returns a snapshot of the voltage and current waveform. The values
    /// in the returned array alternate between voltage and current. The data from
    /// one getter call contains 768 data points for voltage and current, which
    /// correspond to about 3 full sine waves.
    ///
    /// The voltage is given with a resolution of 100mV and the current is given
    /// with a resolution of 10mA.
    ///
    /// This data is meant to be used for a non-realtime graphical representation of
    /// the voltage and current waveforms.
    pub fn get_waveform(&self) -> Result<Vec<i16>, BrickletRecvTimeoutError> {
        let ll_result = self.device.get_high_level(0, &mut || self.get_waveform_low_level().recv())?;
        Ok(ll_result.0)
    }

    /// Returns *true* if a voltage/current transformer is connected to the Bricklet.
    pub fn get_transformer_status(&self) -> ConvertingReceiver<TransformerStatus> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetTransformerStatus), payload)
    }

    /// Sets the transformer ratio for the voltage and current transformer in 1/100 form.
    ///
    /// Example: If your mains voltage is 230V, you use 9V voltage transformer and a
    /// 1V:30A current clamp your voltage ratio is 230/9 = 25.56 and your current ratio
    /// is 30/1 = 30.
    ///
    /// In this case you have to set the values 2556 and 3000 for voltage ratio and current
    /// ratio.
    ///
    /// The calibration is saved in non-volatile memory, you only have to set it once.
    ///
    /// Set the phase shift to 0. It is for future use and currently not supported by the Bricklet.
    pub fn set_transformer_calibration(&self, voltage_ratio: u16, current_ratio: u16, phase_shift: i16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 6];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(voltage_ratio));
        payload[2..4].copy_from_slice(&<u16>::to_le_byte_vec(current_ratio));
        payload[4..6].copy_from_slice(&<i16>::to_le_byte_vec(phase_shift));

        self.device.set(u8::from(EnergyMonitorBrickletFunction::SetTransformerCalibration), payload)
    }

    /// Returns the transformer calibration as set by [`set_transformer_calibration`].
    pub fn get_transformer_calibration(&self) -> ConvertingReceiver<TransformerCalibration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetTransformerCalibration), payload)
    }

    /// Calling this function will start an offset calibration. The offset calibration will
    /// integrate the voltage and current waveform over a longer time period to find the 0
    /// transition point in the sine wave.
    ///
    /// The Bricklet comes with a factory-calibrated offset value, you should not have to
    /// call this function.
    ///
    /// If you want to re-calibrate the offset we recommend that you connect a load that
    /// has a smooth sinusoidal voltage and current waveform. Alternatively you can also
    /// short both inputs.
    ///
    /// The calibration is saved in non-volatile memory, you only have to set it once.
    pub fn calibrate_offset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(EnergyMonitorBrickletFunction::CalibrateOffset), payload)
    }

    /// The period is the period with which the [`get_energy_data_callback_receiver`]
    /// receiver is triggered periodically. A value of 0 turns the receiver off.
    ///
    /// If the `value has to change`-parameter is set to true, the receiver is only
    /// triggered after the value has changed. If the value didn't change within the
    /// period, the receiver is triggered immediately on change.
    ///
    /// If it is set to false, the receiver is continuously triggered with the period,
    /// independent of the value.
    pub fn set_energy_data_callback_configuration(&self, period: u32, value_has_to_change: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 5];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(period));
        payload[4..5].copy_from_slice(&<bool>::to_le_byte_vec(value_has_to_change));

        self.device.set(u8::from(EnergyMonitorBrickletFunction::SetEnergyDataCallbackConfiguration), payload)
    }

    /// Returns the receiver configuration as set by
    /// [`set_energy_data_callback_configuration`].
    pub fn get_energy_data_callback_configuration(&self) -> ConvertingReceiver<EnergyDataCallbackConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetEnergyDataCallbackConfiguration), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Bricklet side. All
    /// Bricks have a similar function that returns the errors on the Brick side.
    pub fn get_spitfp_error_count(&self) -> ConvertingReceiver<SpitfpErrorCount> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetSpitfpErrorCount), payload)
    }

    /// Sets the bootloader mode and returns the status after the requested
    /// mode change was instigated.
    ///
    /// You can change from bootloader mode to firmware mode and vice versa. A change
    /// from bootloader mode to firmware mode will only take place if the entry function,
    /// device identifier and CRC are present and correct.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// Associated constants:
    /// * ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_OK
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
    pub fn set_bootloader_mode(&self, mode: u8) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(mode));

        self.device.get(u8::from(EnergyMonitorBrickletFunction::SetBootloaderMode), payload)
    }

    /// Returns the current bootloader mode, see [`set_bootloader_mode`].
    ///
    /// Associated constants:
    /// * ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* ENERGY_MONITOR_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    pub fn get_bootloader_mode(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetBootloaderMode), payload)
    }

    /// Sets the firmware pointer for [`write_firmware`]. The pointer has
    /// to be increased by chunks of size 64. The data is written to flash
    /// every 4 chunks (which equals to one page of size 256).
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn set_write_firmware_pointer(&self, pointer: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(pointer));

        self.device.set(u8::from(EnergyMonitorBrickletFunction::SetWriteFirmwarePointer), payload)
    }

    /// Writes 64 Bytes of firmware at the position as written by
    /// [`set_write_firmware_pointer`] before. The firmware is written
    /// to flash every 4 chunks.
    ///
    /// You can only write firmware in bootloader mode.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn write_firmware(&self, data: [u8; 64]) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 64];
        payload[0..64].copy_from_slice(&<[u8; 64]>::to_le_byte_vec(data));

        self.device.get(u8::from(EnergyMonitorBrickletFunction::WriteFirmware), payload)
    }

    /// Sets the status LED configuration. By default the LED shows
    /// communication traffic between Brick and Bricklet, it flickers once
    /// for every 10 received data packets.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
    ///
    /// Associated constants:
    /// * ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn set_status_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(EnergyMonitorBrickletFunction::SetStatusLedConfig), payload)
    }

    /// Returns the configuration as set by [`set_status_led_config`]
    ///
    /// Associated constants:
    /// * ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* ENERGY_MONITOR_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn get_status_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetStatusLedConfig), payload)
    }

    /// Returns the temperature as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has bad
    /// accuracy. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Bricklet. All configurations
    /// will be lost.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(EnergyMonitorBrickletFunction::Reset), payload)
    }

    /// Writes a new UID into flash. If you want to set a new UID
    /// you have to decode the Base58 encoded UID string into an
    /// integer first.
    ///
    /// We recommend that you use Brick Viewer to change the UID.
    pub fn write_uid(&self, uid: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(uid));

        self.device.set(u8::from(EnergyMonitorBrickletFunction::WriteUid), payload)
    }

    /// Returns the current UID as an integer. Encode as
    /// Base58 to get the usual string version.
    pub fn read_uid(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::ReadUid), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port).
    /// A Bricklet connected to an [Isolator Bricklet](isolator_bricklet) is always at
    /// position 'z'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(EnergyMonitorBrickletFunction::GetIdentity), payload)
    }
}