1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
/* ***********************************************************
 * This file was automatically generated on 2024-02-27.      *
 *                                                           *
 * Rust Bindings Version 2.0.21                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Drives one brushed DC motor with up to 28V and 5A (peak).
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricks/DC_Brick_Rust.html).
use crate::{
    byte_converter::*, converting_callback_receiver::ConvertingCallbackReceiver, converting_receiver::ConvertingReceiver, device::*,
    ip_connection::GetRequestSender,
};
pub enum DcBrickFunction {
    SetVelocity,
    GetVelocity,
    GetCurrentVelocity,
    SetAcceleration,
    GetAcceleration,
    SetPwmFrequency,
    GetPwmFrequency,
    FullBrake,
    GetStackInputVoltage,
    GetExternalInputVoltage,
    GetCurrentConsumption,
    Enable,
    Disable,
    IsEnabled,
    SetMinimumVoltage,
    GetMinimumVoltage,
    SetDriveMode,
    GetDriveMode,
    SetCurrentVelocityPeriod,
    GetCurrentVelocityPeriod,
    SetSpitfpBaudrateConfig,
    GetSpitfpBaudrateConfig,
    GetSendTimeoutCount,
    SetSpitfpBaudrate,
    GetSpitfpBaudrate,
    GetSpitfpErrorCount,
    EnableStatusLed,
    DisableStatusLed,
    IsStatusLedEnabled,
    GetProtocol1BrickletName,
    GetChipTemperature,
    Reset,
    WriteBrickletPlugin,
    ReadBrickletPlugin,
    GetIdentity,
    CallbackUnderVoltage,
    CallbackEmergencyShutdown,
    CallbackVelocityReached,
    CallbackCurrentVelocity,
}
impl From<DcBrickFunction> for u8 {
    fn from(fun: DcBrickFunction) -> Self {
        match fun {
            DcBrickFunction::SetVelocity => 1,
            DcBrickFunction::GetVelocity => 2,
            DcBrickFunction::GetCurrentVelocity => 3,
            DcBrickFunction::SetAcceleration => 4,
            DcBrickFunction::GetAcceleration => 5,
            DcBrickFunction::SetPwmFrequency => 6,
            DcBrickFunction::GetPwmFrequency => 7,
            DcBrickFunction::FullBrake => 8,
            DcBrickFunction::GetStackInputVoltage => 9,
            DcBrickFunction::GetExternalInputVoltage => 10,
            DcBrickFunction::GetCurrentConsumption => 11,
            DcBrickFunction::Enable => 12,
            DcBrickFunction::Disable => 13,
            DcBrickFunction::IsEnabled => 14,
            DcBrickFunction::SetMinimumVoltage => 15,
            DcBrickFunction::GetMinimumVoltage => 16,
            DcBrickFunction::SetDriveMode => 17,
            DcBrickFunction::GetDriveMode => 18,
            DcBrickFunction::SetCurrentVelocityPeriod => 19,
            DcBrickFunction::GetCurrentVelocityPeriod => 20,
            DcBrickFunction::SetSpitfpBaudrateConfig => 231,
            DcBrickFunction::GetSpitfpBaudrateConfig => 232,
            DcBrickFunction::GetSendTimeoutCount => 233,
            DcBrickFunction::SetSpitfpBaudrate => 234,
            DcBrickFunction::GetSpitfpBaudrate => 235,
            DcBrickFunction::GetSpitfpErrorCount => 237,
            DcBrickFunction::EnableStatusLed => 238,
            DcBrickFunction::DisableStatusLed => 239,
            DcBrickFunction::IsStatusLedEnabled => 240,
            DcBrickFunction::GetProtocol1BrickletName => 241,
            DcBrickFunction::GetChipTemperature => 242,
            DcBrickFunction::Reset => 243,
            DcBrickFunction::WriteBrickletPlugin => 246,
            DcBrickFunction::ReadBrickletPlugin => 247,
            DcBrickFunction::GetIdentity => 255,
            DcBrickFunction::CallbackUnderVoltage => 21,
            DcBrickFunction::CallbackEmergencyShutdown => 22,
            DcBrickFunction::CallbackVelocityReached => 23,
            DcBrickFunction::CallbackCurrentVelocity => 24,
        }
    }
}
pub const DC_BRICK_DRIVE_MODE_DRIVE_BRAKE: u8 = 0;
pub const DC_BRICK_DRIVE_MODE_DRIVE_COAST: u8 = 1;
pub const DC_BRICK_COMMUNICATION_METHOD_NONE: u8 = 0;
pub const DC_BRICK_COMMUNICATION_METHOD_USB: u8 = 1;
pub const DC_BRICK_COMMUNICATION_METHOD_SPI_STACK: u8 = 2;
pub const DC_BRICK_COMMUNICATION_METHOD_CHIBI: u8 = 3;
pub const DC_BRICK_COMMUNICATION_METHOD_RS485: u8 = 4;
pub const DC_BRICK_COMMUNICATION_METHOD_WIFI: u8 = 5;
pub const DC_BRICK_COMMUNICATION_METHOD_ETHERNET: u8 = 6;
pub const DC_BRICK_COMMUNICATION_METHOD_WIFI_V2: u8 = 7;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpBaudrateConfig {
    pub enable_dynamic_baudrate: bool,
    pub minimum_dynamic_baudrate: u32,
}
impl FromByteSlice for SpitfpBaudrateConfig {
    fn bytes_expected() -> usize { 5 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpBaudrateConfig {
        SpitfpBaudrateConfig {
            enable_dynamic_baudrate: <bool>::from_le_byte_slice(&bytes[0..1]),
            minimum_dynamic_baudrate: <u32>::from_le_byte_slice(&bytes[1..5]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone)]
pub struct Protocol1BrickletName {
    pub protocol_version: u8,
    pub firmware_version: [u8; 3],
    pub name: String,
}
impl FromByteSlice for Protocol1BrickletName {
    fn bytes_expected() -> usize { 44 }
    fn from_le_byte_slice(bytes: &[u8]) -> Protocol1BrickletName {
        Protocol1BrickletName {
            protocol_version: <u8>::from_le_byte_slice(&bytes[0..1]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[1..4]),
            name: <String>::from_le_byte_slice(&bytes[4..44]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

/// Drives one brushed DC motor with up to 28V and 5A (peak)
#[derive(Clone)]
pub struct DcBrick {
    device: Device,
}
impl DcBrick {
    pub const DEVICE_IDENTIFIER: u16 = 11;
    pub const DEVICE_DISPLAY_NAME: &'static str = "DC Brick";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> DcBrick {
        let mut result = DcBrick { device: Device::new([2, 0, 3], uid, req_sender, 0) };
        result.device.response_expected[u8::from(DcBrickFunction::SetVelocity) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::GetVelocity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::GetCurrentVelocity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::SetAcceleration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::GetAcceleration) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::SetPwmFrequency) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::GetPwmFrequency) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::FullBrake) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::GetStackInputVoltage) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::GetExternalInputVoltage) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::GetCurrentConsumption) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::Enable) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::Disable) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::IsEnabled) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::SetMinimumVoltage) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(DcBrickFunction::GetMinimumVoltage) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::SetDriveMode) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::GetDriveMode) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::SetCurrentVelocityPeriod) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(DcBrickFunction::GetCurrentVelocityPeriod) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::SetSpitfpBaudrateConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::GetSpitfpBaudrateConfig) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::GetSendTimeoutCount) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::SetSpitfpBaudrate) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::GetSpitfpBaudrate) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::GetSpitfpErrorCount) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::EnableStatusLed) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::DisableStatusLed) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::IsStatusLedEnabled) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::GetProtocol1BrickletName) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::GetChipTemperature) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::WriteBrickletPlugin) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(DcBrickFunction::ReadBrickletPlugin) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(DcBrickFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::dc_brick::DcBrick::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::dc_brick::DcBrick::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: DcBrickFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(&mut self, fun: DcBrickFunction, response_expected: bool) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is triggered when the input voltage drops below the value set by
    /// [`set_minimum_voltage`]. The parameter is the current voltage.
    ///
    /// [`set_minimum_voltage`]: #method.set_minimum_voltage
    pub fn get_under_voltage_callback_receiver(&self) -> ConvertingCallbackReceiver<u16> {
        self.device.get_callback_receiver(u8::from(DcBrickFunction::CallbackUnderVoltage))
    }

    /// This receiver is triggered if either the current consumption
    /// is too high (above 5A) or the temperature of the driver chip is too high
    /// (above 175°C). These two possibilities are essentially the same, since the
    /// temperature will reach this threshold immediately if the motor consumes too
    /// much current. In case of a voltage below 3.3V (external or stack) this
    /// receiver is triggered as well.
    ///
    /// If this receiver is triggered, the driver chip gets disabled at the same time.
    /// That means, [`enable`] has to be called to drive the motor again.
    ///
    /// # Note
    ///  This receiver only works in Drive/Brake mode (see [`set_drive_mode`]). In
    ///  Drive/Coast mode it is unfortunately impossible to reliably read the
    ///  overcurrent/overtemperature signal from the driver chip.
    pub fn get_emergency_shutdown_callback_receiver(&self) -> ConvertingCallbackReceiver<()> {
        self.device.get_callback_receiver(u8::from(DcBrickFunction::CallbackEmergencyShutdown))
    }

    /// This receiver is triggered whenever a set velocity is reached. For example:
    /// If a velocity of 0 is present, acceleration is set to 5000 and velocity
    /// to 10000, the [`get_velocity_reached_callback_receiver`] receiver will be triggered after about
    /// 2 seconds, when the set velocity is actually reached.
    ///
    /// # Note
    ///  Since we can't get any feedback from the DC motor, this only works if the
    ///  acceleration (see [`set_acceleration`]) is set smaller or equal to the
    ///  maximum acceleration of the motor. Otherwise the motor will lag behind the
    ///  control value and the receiver will be triggered too early.
    pub fn get_velocity_reached_callback_receiver(&self) -> ConvertingCallbackReceiver<i16> {
        self.device.get_callback_receiver(u8::from(DcBrickFunction::CallbackVelocityReached))
    }

    /// This receiver is triggered with the period that is set by
    /// [`set_current_velocity_period`]. The parameter is the *current*
    /// velocity used by the motor.
    ///
    /// The [`get_current_velocity_callback_receiver`] receiver is only triggered after the set period
    /// if there is a change in the velocity.
    pub fn get_current_velocity_callback_receiver(&self) -> ConvertingCallbackReceiver<i16> {
        self.device.get_callback_receiver(u8::from(DcBrickFunction::CallbackCurrentVelocity))
    }

    /// Sets the velocity of the motor. Whereas -32767 is full speed backward,
    /// 0 is stop and 32767 is full speed forward. Depending on the
    /// acceleration (see [`set_acceleration`]), the motor is not immediately
    /// brought to the velocity but smoothly accelerated.
    ///
    /// The velocity describes the duty cycle of the PWM with which the motor is
    /// controlled, e.g. a velocity of 3277 sets a PWM with a 10% duty cycle.
    /// You can not only control the duty cycle of the PWM but also the frequency,
    /// see [`set_pwm_frequency`].
    pub fn set_velocity(&self, velocity: i16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<i16>::to_le_byte_vec(velocity));

        self.device.set(u8::from(DcBrickFunction::SetVelocity), payload)
    }

    /// Returns the velocity as set by [`set_velocity`].
    pub fn get_velocity(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetVelocity), payload)
    }

    /// Returns the *current* velocity of the motor. This value is different
    /// from [`get_velocity`] whenever the motor is currently accelerating
    /// to a goal set by [`set_velocity`].
    pub fn get_current_velocity(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetCurrentVelocity), payload)
    }

    /// Sets the acceleration of the motor. It is given in *velocity/s*. An
    /// acceleration of 10000 means, that every second the velocity is increased
    /// by 10000 (or about 30% duty cycle).
    ///
    /// For example: If the current velocity is 0 and you want to accelerate to a
    /// velocity of 16000 (about 50% duty cycle) in 10 seconds, you should set
    /// an acceleration of 1600.
    ///
    /// If acceleration is set to 0, there is no speed ramping, i.e. a new velocity
    /// is immediately given to the motor.
    pub fn set_acceleration(&self, acceleration: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(acceleration));

        self.device.set(u8::from(DcBrickFunction::SetAcceleration), payload)
    }

    /// Returns the acceleration as set by [`set_acceleration`].
    pub fn get_acceleration(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetAcceleration), payload)
    }

    /// Sets the frequency of the PWM with which the motor is driven.
    /// Often a high frequency
    /// is less noisy and the motor runs smoother. However, with a low frequency
    /// there are less switches and therefore fewer switching losses. Also with
    /// most motors lower frequencies enable higher torque.
    ///
    /// If you have no idea what all this means, just ignore this function and use
    /// the default frequency, it will very likely work fine.
    pub fn set_pwm_frequency(&self, frequency: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(frequency));

        self.device.set(u8::from(DcBrickFunction::SetPwmFrequency), payload)
    }

    /// Returns the PWM frequency as set by [`set_pwm_frequency`].
    pub fn get_pwm_frequency(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetPwmFrequency), payload)
    }

    /// Executes an active full brake.
    ///
    /// # Warning
    ///  This function is for emergency purposes,
    ///  where an immediate brake is necessary. Depending on the current velocity and
    ///  the strength of the motor, a full brake can be quite violent.
    ///
    /// Call [`set_velocity`] with 0 if you just want to stop the motor.
    pub fn full_brake(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(DcBrickFunction::FullBrake), payload)
    }

    /// Returns the stack input voltage. The stack input voltage is the
    /// voltage that is supplied via the stack, i.e. it is given by a
    /// Step-Down or Step-Up Power Supply.
    pub fn get_stack_input_voltage(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetStackInputVoltage), payload)
    }

    /// Returns the external input voltage. The external input voltage is
    /// given via the black power input connector on the DC Brick.
    ///
    /// If there is an external input voltage and a stack input voltage, the motor
    /// will be driven by the external input voltage. If there is only a stack
    /// voltage present, the motor will be driven by this voltage.
    ///
    /// # Warning
    ///  This means, if you have a high stack voltage and a low external voltage,
    ///  the motor will be driven with the low external voltage. If you then remove
    ///  the external connection, it will immediately be driven by the high
    ///  stack voltage.
    pub fn get_external_input_voltage(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetExternalInputVoltage), payload)
    }

    /// Returns the current consumption of the motor.
    pub fn get_current_consumption(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetCurrentConsumption), payload)
    }

    /// Enables the driver chip. The driver parameters can be configured (velocity,
    /// acceleration, etc) before it is enabled.
    pub fn enable(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(DcBrickFunction::Enable), payload)
    }

    /// Disables the driver chip. The configurations are kept (velocity,
    /// acceleration, etc) but the motor is not driven until it is enabled again.
    ///
    /// # Warning
    ///  Disabling the driver chip while the motor is still turning can damage the
    ///  driver chip. The motor should be stopped calling [`set_velocity`] with 0
    ///  before disabling the motor power. The [`set_velocity`] function will **not**
    ///  wait until the motor is actually stopped. You have to explicitly wait for the
    ///  appropriate time after calling the [`set_velocity`] function before calling
    ///  the [`disable`] function.
    pub fn disable(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(DcBrickFunction::Disable), payload)
    }

    /// Returns *true* if the driver chip is enabled, *false* otherwise.
    pub fn is_enabled(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::IsEnabled), payload)
    }

    /// Sets the minimum voltage, below which the [`get_under_voltage_callback_receiver`] receiver
    /// is triggered. The minimum possible value that works with the DC Brick is 6V.
    /// You can use this function to detect the discharge of a battery that is used
    /// to drive the motor. If you have a fixed power supply, you likely do not need
    /// this functionality.
    pub fn set_minimum_voltage(&self, voltage: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(voltage));

        self.device.set(u8::from(DcBrickFunction::SetMinimumVoltage), payload)
    }

    /// Returns the minimum voltage as set by [`set_minimum_voltage`]
    pub fn get_minimum_voltage(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetMinimumVoltage), payload)
    }

    /// Sets the drive mode. Possible modes are:
    ///
    /// * 0 = Drive/Brake
    /// * 1 = Drive/Coast
    ///
    /// These modes are different kinds of motor controls.
    ///
    /// In Drive/Brake mode, the motor is always either driving or braking. There
    /// is no freewheeling. Advantages are: A more linear correlation between
    /// PWM and velocity, more exact accelerations and the possibility to drive
    /// with slower velocities.
    ///
    /// In Drive/Coast mode, the motor is always either driving or freewheeling.
    /// Advantages are: Less current consumption and less demands on the motor and
    /// driver chip.
    ///
    /// Associated constants:
    /// * DC_BRICK_DRIVE_MODE_DRIVE_BRAKE
    ///	* DC_BRICK_DRIVE_MODE_DRIVE_COAST
    pub fn set_drive_mode(&self, mode: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(mode));

        self.device.set(u8::from(DcBrickFunction::SetDriveMode), payload)
    }

    /// Returns the drive mode, as set by [`set_drive_mode`].
    ///
    /// Associated constants:
    /// * DC_BRICK_DRIVE_MODE_DRIVE_BRAKE
    ///	* DC_BRICK_DRIVE_MODE_DRIVE_COAST
    pub fn get_drive_mode(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetDriveMode), payload)
    }

    /// Sets a period with which the [`get_current_velocity_callback_receiver`] receiver is triggered.
    /// A period of 0 turns the receiver off.
    pub fn set_current_velocity_period(&self, period: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(period));

        self.device.set(u8::from(DcBrickFunction::SetCurrentVelocityPeriod), payload)
    }

    /// Returns the period as set by [`set_current_velocity_period`].
    pub fn get_current_velocity_period(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetCurrentVelocityPeriod), payload)
    }

    /// The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is
    /// enabled, the Brick will try to adapt the baudrate for the communication
    /// between Bricks and Bricklets according to the amount of data that is transferred.
    ///
    /// The baudrate will be increased exponentially if lots of data is sent/received and
    /// decreased linearly if little data is sent/received.
    ///
    /// This lowers the baudrate in applications where little data is transferred (e.g.
    /// a weather station) and increases the robustness. If there is lots of data to transfer
    /// (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.
    ///
    /// In cases where some data has to transferred as fast as possible every few seconds
    /// (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn
    /// the dynamic baudrate off to get the highest possible performance.
    ///
    /// The maximum value of the baudrate can be set per port with the function
    /// [`set_spitfp_baudrate`]. If the dynamic baudrate is disabled, the baudrate
    /// as set by [`set_spitfp_baudrate`] will be used statically.
    ///
    ///
    /// .. versionadded:: 2.3.5$nbsp;(Firmware)
    pub fn set_spitfp_baudrate_config(&self, enable_dynamic_baudrate: bool, minimum_dynamic_baudrate: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 5];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(enable_dynamic_baudrate));
        payload[1..5].copy_from_slice(&<u32>::to_le_byte_vec(minimum_dynamic_baudrate));

        self.device.set(u8::from(DcBrickFunction::SetSpitfpBaudrateConfig), payload)
    }

    /// Returns the baudrate config, see [`set_spitfp_baudrate_config`].
    ///
    ///
    /// .. versionadded:: 2.3.5$nbsp;(Firmware)
    pub fn get_spitfp_baudrate_config(&self) -> ConvertingReceiver<SpitfpBaudrateConfig> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetSpitfpBaudrateConfig), payload)
    }

    /// Returns the timeout count for the different communication methods.
    ///
    /// The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks.
    ///
    /// This function is mostly used for debugging during development, in normal operation
    /// the counters should nearly always stay at 0.
    ///
    ///
    /// .. versionadded:: 2.3.3$nbsp;(Firmware)
    ///
    /// Associated constants:
    /// * DC_BRICK_COMMUNICATION_METHOD_NONE
    ///	* DC_BRICK_COMMUNICATION_METHOD_USB
    ///	* DC_BRICK_COMMUNICATION_METHOD_SPI_STACK
    ///	* DC_BRICK_COMMUNICATION_METHOD_CHIBI
    ///	* DC_BRICK_COMMUNICATION_METHOD_RS485
    ///	* DC_BRICK_COMMUNICATION_METHOD_WIFI
    ///	* DC_BRICK_COMMUNICATION_METHOD_ETHERNET
    ///	* DC_BRICK_COMMUNICATION_METHOD_WIFI_V2
    pub fn get_send_timeout_count(&self, communication_method: u8) -> ConvertingReceiver<u32> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(communication_method));

        self.device.get(u8::from(DcBrickFunction::GetSendTimeoutCount), payload)
    }

    /// Sets the baudrate for a specific Bricklet port.
    ///
    /// If you want to increase the throughput of Bricklets you can increase
    /// the baudrate. If you get a high error count because of high
    /// interference (see [`get_spitfp_error_count`]) you can decrease the
    /// baudrate.
    ///
    /// If the dynamic baudrate feature is enabled, the baudrate set by this
    /// function corresponds to the maximum baudrate (see [`set_spitfp_baudrate_config`]).
    ///
    /// Regulatory testing is done with the default baudrate. If CE compatibility
    /// or similar is necessary in your applications we recommend to not change
    /// the baudrate.
    ///
    ///
    /// .. versionadded:: 2.3.3$nbsp;(Firmware)
    pub fn set_spitfp_baudrate(&self, bricklet_port: char, baudrate: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 5];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(bricklet_port));
        payload[1..5].copy_from_slice(&<u32>::to_le_byte_vec(baudrate));

        self.device.set(u8::from(DcBrickFunction::SetSpitfpBaudrate), payload)
    }

    /// Returns the baudrate for a given Bricklet port, see [`set_spitfp_baudrate`].
    ///
    ///
    /// .. versionadded:: 2.3.3$nbsp;(Firmware)
    pub fn get_spitfp_baudrate(&self, bricklet_port: char) -> ConvertingReceiver<u32> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(bricklet_port));

        self.device.get(u8::from(DcBrickFunction::GetSpitfpBaudrate), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Brick side. All
    /// Bricklets have a similar function that returns the errors on the Bricklet side.
    ///
    ///
    /// .. versionadded:: 2.3.3$nbsp;(Firmware)
    pub fn get_spitfp_error_count(&self, bricklet_port: char) -> ConvertingReceiver<SpitfpErrorCount> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(bricklet_port));

        self.device.get(u8::from(DcBrickFunction::GetSpitfpErrorCount), payload)
    }

    /// Enables the status LED.
    ///
    /// The status LED is the blue LED next to the USB connector. If enabled is is
    /// on and it flickers if data is transfered. If disabled it is always off.
    ///
    /// The default state is enabled.
    ///
    ///
    /// .. versionadded:: 2.3.1$nbsp;(Firmware)
    pub fn enable_status_led(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(DcBrickFunction::EnableStatusLed), payload)
    }

    /// Disables the status LED.
    ///
    /// The status LED is the blue LED next to the USB connector. If enabled is is
    /// on and it flickers if data is transfered. If disabled it is always off.
    ///
    /// The default state is enabled.
    ///
    ///
    /// .. versionadded:: 2.3.1$nbsp;(Firmware)
    pub fn disable_status_led(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(DcBrickFunction::DisableStatusLed), payload)
    }

    /// Returns *true* if the status LED is enabled, *false* otherwise.
    ///
    ///
    /// .. versionadded:: 2.3.1$nbsp;(Firmware)
    pub fn is_status_led_enabled(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::IsStatusLedEnabled), payload)
    }

    /// Returns the firmware and protocol version and the name of the Bricklet for a
    /// given port.
    ///
    /// This functions sole purpose is to allow automatic flashing of v1.x.y Bricklet
    /// plugins.
    pub fn get_protocol1_bricklet_name(&self, port: char) -> ConvertingReceiver<Protocol1BrickletName> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(port));

        self.device.get(u8::from(DcBrickFunction::GetProtocol1BrickletName), payload)
    }

    /// Returns the temperature as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has an
    /// accuracy of ±15%. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Brick. Calling this function
    /// on a Brick inside of a stack will reset the whole stack.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(DcBrickFunction::Reset), payload)
    }

    /// Writes 32 bytes of firmware to the bricklet attached at the given port.
    /// The bytes are written to the position offset * 32.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn write_bricklet_plugin(&self, port: char, offset: u8, chunk: [u8; 32]) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 34];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(port));
        payload[1..2].copy_from_slice(&<u8>::to_le_byte_vec(offset));
        payload[2..34].copy_from_slice(&<[u8; 32]>::to_le_byte_vec(chunk));

        self.device.set(u8::from(DcBrickFunction::WriteBrickletPlugin), payload)
    }

    /// Reads 32 bytes of firmware from the bricklet attached at the given port.
    /// The bytes are read starting at the position offset * 32.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn read_bricklet_plugin(&self, port: char, offset: u8) -> ConvertingReceiver<[u8; 32]> {
        let mut payload = vec![0; 2];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(port));
        payload[1..2].copy_from_slice(&<u8>::to_le_byte_vec(offset));

        self.device.get(u8::from(DcBrickFunction::ReadBrickletPlugin), payload)
    }

    /// Returns the UID, the UID where the Brick is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position is the position in the stack from '0' (bottom) to '8' (top).
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(DcBrickFunction::GetIdentity), payload)
    }
}