1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/* ***********************************************************
 * This file was automatically generated on 2024-02-27.      *
 *                                                           *
 * Rust Bindings Version 2.0.21                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Drives up to 10 RC Servos.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/ServoV2_Bricklet_Rust.html).
use crate::{
    byte_converter::*, converting_callback_receiver::ConvertingCallbackReceiver, converting_receiver::ConvertingReceiver, device::*,
    ip_connection::GetRequestSender,
};
pub enum ServoV2BrickletFunction {
    GetStatus,
    SetEnable,
    GetEnabled,
    SetPosition,
    GetPosition,
    GetCurrentPosition,
    GetCurrentVelocity,
    SetMotionConfiguration,
    GetMotionConfiguration,
    SetPulseWidth,
    GetPulseWidth,
    SetDegree,
    GetDegree,
    SetPeriod,
    GetPeriod,
    GetServoCurrent,
    SetServoCurrentConfiguration,
    GetServoCurrentConfiguration,
    SetInputVoltageConfiguration,
    GetInputVoltageConfiguration,
    GetOverallCurrent,
    GetInputVoltage,
    SetCurrentCalibration,
    GetCurrentCalibration,
    SetPositionReachedCallbackConfiguration,
    GetPositionReachedCallbackConfiguration,
    GetSpitfpErrorCount,
    SetBootloaderMode,
    GetBootloaderMode,
    SetWriteFirmwarePointer,
    WriteFirmware,
    SetStatusLedConfig,
    GetStatusLedConfig,
    GetChipTemperature,
    Reset,
    WriteUid,
    ReadUid,
    GetIdentity,
    CallbackPositionReached,
}
impl From<ServoV2BrickletFunction> for u8 {
    fn from(fun: ServoV2BrickletFunction) -> Self {
        match fun {
            ServoV2BrickletFunction::GetStatus => 1,
            ServoV2BrickletFunction::SetEnable => 2,
            ServoV2BrickletFunction::GetEnabled => 3,
            ServoV2BrickletFunction::SetPosition => 4,
            ServoV2BrickletFunction::GetPosition => 5,
            ServoV2BrickletFunction::GetCurrentPosition => 6,
            ServoV2BrickletFunction::GetCurrentVelocity => 7,
            ServoV2BrickletFunction::SetMotionConfiguration => 8,
            ServoV2BrickletFunction::GetMotionConfiguration => 9,
            ServoV2BrickletFunction::SetPulseWidth => 10,
            ServoV2BrickletFunction::GetPulseWidth => 11,
            ServoV2BrickletFunction::SetDegree => 12,
            ServoV2BrickletFunction::GetDegree => 13,
            ServoV2BrickletFunction::SetPeriod => 14,
            ServoV2BrickletFunction::GetPeriod => 15,
            ServoV2BrickletFunction::GetServoCurrent => 16,
            ServoV2BrickletFunction::SetServoCurrentConfiguration => 17,
            ServoV2BrickletFunction::GetServoCurrentConfiguration => 18,
            ServoV2BrickletFunction::SetInputVoltageConfiguration => 19,
            ServoV2BrickletFunction::GetInputVoltageConfiguration => 20,
            ServoV2BrickletFunction::GetOverallCurrent => 21,
            ServoV2BrickletFunction::GetInputVoltage => 22,
            ServoV2BrickletFunction::SetCurrentCalibration => 23,
            ServoV2BrickletFunction::GetCurrentCalibration => 24,
            ServoV2BrickletFunction::SetPositionReachedCallbackConfiguration => 25,
            ServoV2BrickletFunction::GetPositionReachedCallbackConfiguration => 26,
            ServoV2BrickletFunction::GetSpitfpErrorCount => 234,
            ServoV2BrickletFunction::SetBootloaderMode => 235,
            ServoV2BrickletFunction::GetBootloaderMode => 236,
            ServoV2BrickletFunction::SetWriteFirmwarePointer => 237,
            ServoV2BrickletFunction::WriteFirmware => 238,
            ServoV2BrickletFunction::SetStatusLedConfig => 239,
            ServoV2BrickletFunction::GetStatusLedConfig => 240,
            ServoV2BrickletFunction::GetChipTemperature => 242,
            ServoV2BrickletFunction::Reset => 243,
            ServoV2BrickletFunction::WriteUid => 248,
            ServoV2BrickletFunction::ReadUid => 249,
            ServoV2BrickletFunction::GetIdentity => 255,
            ServoV2BrickletFunction::CallbackPositionReached => 27,
        }
    }
}
pub const SERVO_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER: u8 = 0;
pub const SERVO_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE: u8 = 1;
pub const SERVO_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT: u8 = 2;
pub const SERVO_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT: u8 = 3;
pub const SERVO_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT: u8 = 4;
pub const SERVO_V2_BRICKLET_BOOTLOADER_STATUS_OK: u8 = 0;
pub const SERVO_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE: u8 = 1;
pub const SERVO_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE: u8 = 2;
pub const SERVO_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT: u8 = 3;
pub const SERVO_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT: u8 = 4;
pub const SERVO_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH: u8 = 5;
pub const SERVO_V2_BRICKLET_STATUS_LED_CONFIG_OFF: u8 = 0;
pub const SERVO_V2_BRICKLET_STATUS_LED_CONFIG_ON: u8 = 1;
pub const SERVO_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const SERVO_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS: u8 = 3;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Status {
    pub enabled: [bool; 10],
    pub current_position: [i16; 10],
    pub current_velocity: [i16; 10],
    pub current: [u16; 10],
    pub input_voltage: u16,
}
impl FromByteSlice for Status {
    fn bytes_expected() -> usize { 64 }
    fn from_le_byte_slice(bytes: &[u8]) -> Status {
        Status {
            enabled: <[bool; 10]>::from_le_byte_slice(&bytes[0..2]),
            current_position: <[i16; 10]>::from_le_byte_slice(&bytes[2..22]),
            current_velocity: <[i16; 10]>::from_le_byte_slice(&bytes[22..42]),
            current: <[u16; 10]>::from_le_byte_slice(&bytes[42..62]),
            input_voltage: <u16>::from_le_byte_slice(&bytes[62..64]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct MotionConfiguration {
    pub velocity: u32,
    pub acceleration: u32,
    pub deceleration: u32,
}
impl FromByteSlice for MotionConfiguration {
    fn bytes_expected() -> usize { 12 }
    fn from_le_byte_slice(bytes: &[u8]) -> MotionConfiguration {
        MotionConfiguration {
            velocity: <u32>::from_le_byte_slice(&bytes[0..4]),
            acceleration: <u32>::from_le_byte_slice(&bytes[4..8]),
            deceleration: <u32>::from_le_byte_slice(&bytes[8..12]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct PulseWidth {
    pub min: u32,
    pub max: u32,
}
impl FromByteSlice for PulseWidth {
    fn bytes_expected() -> usize { 8 }
    fn from_le_byte_slice(bytes: &[u8]) -> PulseWidth {
        PulseWidth { min: <u32>::from_le_byte_slice(&bytes[0..4]), max: <u32>::from_le_byte_slice(&bytes[4..8]) }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Degree {
    pub min: i16,
    pub max: i16,
}
impl FromByteSlice for Degree {
    fn bytes_expected() -> usize { 4 }
    fn from_le_byte_slice(bytes: &[u8]) -> Degree {
        Degree { min: <i16>::from_le_byte_slice(&bytes[0..2]), max: <i16>::from_le_byte_slice(&bytes[2..4]) }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct PositionReachedEvent {
    pub servo_channel: u16,
    pub position: i16,
}
impl FromByteSlice for PositionReachedEvent {
    fn bytes_expected() -> usize { 4 }
    fn from_le_byte_slice(bytes: &[u8]) -> PositionReachedEvent {
        PositionReachedEvent { servo_channel: <u16>::from_le_byte_slice(&bytes[0..2]), position: <i16>::from_le_byte_slice(&bytes[2..4]) }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

/// Drives up to 10 RC Servos
#[derive(Clone)]
pub struct ServoV2Bricklet {
    device: Device,
}
impl ServoV2Bricklet {
    pub const DEVICE_IDENTIFIER: u16 = 2157;
    pub const DEVICE_DISPLAY_NAME: &'static str = "Servo Bricklet 2.0";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> ServoV2Bricklet {
        let mut result = ServoV2Bricklet { device: Device::new([2, 0, 0], uid, req_sender, 0) };
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetStatus) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetEnable) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetEnabled) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetPosition) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetPosition) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetCurrentPosition) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetCurrentVelocity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetMotionConfiguration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetMotionConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetPulseWidth) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetPulseWidth) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetDegree) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetDegree) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetPeriod) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetPeriod) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetServoCurrent) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetServoCurrentConfiguration) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetServoCurrentConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetInputVoltageConfiguration) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetInputVoltageConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetOverallCurrent) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetInputVoltage) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetCurrentCalibration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetCurrentCalibration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetPositionReachedCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetPositionReachedCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetSpitfpErrorCount) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetBootloaderMode) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetBootloaderMode) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetWriteFirmwarePointer) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::WriteFirmware) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::SetStatusLedConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetStatusLedConfig) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetChipTemperature) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::WriteUid) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::ReadUid) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ServoV2BrickletFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::servo_v2_bricklet::ServoV2Bricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::servo_v2_bricklet::ServoV2Bricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: ServoV2BrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(&mut self, fun: ServoV2BrickletFunction, response_expected: bool) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is triggered when a position set by [`set_position`]
    /// is reached. If the new position matches the current position then the
    /// receiver is not triggered, because the servo didn't move.
    /// The parameters are the servo and the position that is reached.
    ///
    /// You can enable this receiver with [`set_position_reached_callback_configuration`].
    ///
    /// # Note
    ///  Since we can't get any feedback from the servo, this only works if the
    ///  velocity (see [`set_motion_configuration`]) is set smaller or equal to the
    ///  maximum velocity of the servo. Otherwise the servo will lag behind the
    ///  control value and the receiver will be triggered too early.
    ///
    /// [`set_position`]: #method.set_position
    /// [`set_motion_configuration`]: #method.set_motion_configuration
    /// [`set_position_reached_callback_configuration`]: #method.set_position_reached_callback_configuration
    pub fn get_position_reached_callback_receiver(&self) -> ConvertingCallbackReceiver<PositionReachedEvent> {
        self.device.get_callback_receiver(u8::from(ServoV2BrickletFunction::CallbackPositionReached))
    }

    /// Returns the status information of the Servo Bricklet 2.0.
    ///
    /// The status includes
    ///
    /// * for each channel if it is enabled or disabled,
    /// * for each channel the current position,
    /// * for each channel the current velocity,
    /// * for each channel the current usage and
    /// * the input voltage.
    ///
    /// Please note that the position and the velocity is a snapshot of the
    /// current position and velocity of the servo in motion.
    pub fn get_status(&self) -> ConvertingReceiver<Status> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetStatus), payload)
    }

    /// Enables a servo channel (0 to 9). If a servo is enabled, the configured position,
    /// velocity, acceleration, etc. are applied immediately.
    pub fn set_enable(&self, servo_channel: u16, enable: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 3];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));
        payload[2..3].copy_from_slice(&<bool>::to_le_byte_vec(enable));

        self.device.set(u8::from(ServoV2BrickletFunction::SetEnable), payload)
    }

    /// Returns *true* if the specified servo channel is enabled, *false* otherwise.
    pub fn get_enabled(&self, servo_channel: u16) -> ConvertingReceiver<bool> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetEnabled), payload)
    }

    /// Sets the position in °/100 for the specified servo channel.
    ///
    /// The default range of the position is -9000 to 9000, but it can be specified
    /// according to your servo with [`set_degree`].
    ///
    /// If you want to control a linear servo or RC brushless motor controller or
    /// similar with the Servo Brick, you can also define lengths or speeds with
    /// [`set_degree`].
    pub fn set_position(&self, servo_channel: u16, position: i16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));
        payload[2..4].copy_from_slice(&<i16>::to_le_byte_vec(position));

        self.device.set(u8::from(ServoV2BrickletFunction::SetPosition), payload)
    }

    /// Returns the position of the specified servo channel as set by [`set_position`].
    pub fn get_position(&self, servo_channel: u16) -> ConvertingReceiver<i16> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetPosition), payload)
    }

    /// Returns the *current* position of the specified servo channel. This may not be the
    /// value of [`set_position`] if the servo is currently approaching a
    /// position goal.
    pub fn get_current_position(&self, servo_channel: u16) -> ConvertingReceiver<i16> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetCurrentPosition), payload)
    }

    /// Returns the *current* velocity of the specified servo channel. This may not be the
    /// velocity specified by [`set_motion_configuration`]. if the servo is
    /// currently approaching a velocity goal.
    pub fn get_current_velocity(&self, servo_channel: u16) -> ConvertingReceiver<u16> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetCurrentVelocity), payload)
    }

    /// Sets the maximum velocity of the specified servo channel in °/100s as well as
    /// the acceleration and deceleration in °/100s²
    ///
    /// With a velocity of 0 °/100s the position will be set immediately (no velocity).
    ///
    /// With an acc-/deceleration of 0 °/100s² the velocity will be set immediately
    /// (no acc-/deceleration).
    pub fn set_motion_configuration(
        &self,
        servo_channel: u16,
        velocity: u32,
        acceleration: u32,
        deceleration: u32,
    ) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 14];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));
        payload[2..6].copy_from_slice(&<u32>::to_le_byte_vec(velocity));
        payload[6..10].copy_from_slice(&<u32>::to_le_byte_vec(acceleration));
        payload[10..14].copy_from_slice(&<u32>::to_le_byte_vec(deceleration));

        self.device.set(u8::from(ServoV2BrickletFunction::SetMotionConfiguration), payload)
    }

    /// Returns the motion configuration as set by [`set_motion_configuration`].
    pub fn get_motion_configuration(&self, servo_channel: u16) -> ConvertingReceiver<MotionConfiguration> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetMotionConfiguration), payload)
    }

    /// Sets the minimum and maximum pulse width of the specified servo channel in µs.
    ///
    /// Usually, servos are controlled with a
    /// [PWM](https://en.wikipedia.org/wiki/Pulse-width_modulation)__, whereby the
    /// length of the pulse controls the position of the servo. Every servo has
    /// different minimum and maximum pulse widths, these can be specified with
    /// this function.
    ///
    /// If you have a datasheet for your servo that specifies the minimum and
    /// maximum pulse width, you should set the values accordingly. If your servo
    /// comes without any datasheet you have to find the values via trial and error.
    ///
    /// Both values have a range from 1 to 65535 (unsigned 16-bit integer). The
    /// minimum must be smaller than the maximum.
    ///
    /// The default values are 1000µs (1ms) and 2000µs (2ms) for minimum and
    /// maximum pulse width.
    pub fn set_pulse_width(&self, servo_channel: u16, min: u32, max: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 10];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));
        payload[2..6].copy_from_slice(&<u32>::to_le_byte_vec(min));
        payload[6..10].copy_from_slice(&<u32>::to_le_byte_vec(max));

        self.device.set(u8::from(ServoV2BrickletFunction::SetPulseWidth), payload)
    }

    /// Returns the minimum and maximum pulse width for the specified servo channel as set by
    /// [`set_pulse_width`].
    pub fn get_pulse_width(&self, servo_channel: u16) -> ConvertingReceiver<PulseWidth> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetPulseWidth), payload)
    }

    /// Sets the minimum and maximum degree for the specified servo channel (by default
    /// given as °/100).
    ///
    /// This only specifies the abstract values between which the minimum and maximum
    /// pulse width is scaled. For example: If you specify a pulse width of 1000µs
    /// to 2000µs and a degree range of -90° to 90°, a call of [`set_position`]
    /// with 0 will result in a pulse width of 1500µs
    /// (-90° = 1000µs, 90° = 2000µs, etc.).
    ///
    /// Possible usage:
    ///
    /// * The datasheet of your servo specifies a range of 200° with the middle position
    ///   at 110°. In this case you can set the minimum to -9000 and the maximum to 11000.
    /// * You measure a range of 220° on your servo and you don't have or need a middle
    ///   position. In this case you can set the minimum to 0 and the maximum to 22000.
    /// * You have a linear servo with a drive length of 20cm, In this case you could
    ///   set the minimum to 0 and the maximum to 20000. Now you can set the Position
    ///   with [`set_position`] with a resolution of cm/100. Also the velocity will
    ///   have a resolution of cm/100s and the acceleration will have a resolution of
    ///   cm/100s².
    /// * You don't care about units and just want the highest possible resolution. In
    ///   this case you should set the minimum to -32767 and the maximum to 32767.
    /// * You have a brushless motor with a maximum speed of 10000 rpm and want to
    ///   control it with a RC brushless motor controller. In this case you can set the
    ///   minimum to 0 and the maximum to 10000. [`set_position`] now controls the rpm.
    ///
    /// Both values have a possible range from -32767 to 32767
    /// (signed 16-bit integer). The minimum must be smaller than the maximum.
    ///
    /// The default values are -9000 and 9000 for the minimum and maximum degree.
    pub fn set_degree(&self, servo_channel: u16, min: i16, max: i16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 6];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));
        payload[2..4].copy_from_slice(&<i16>::to_le_byte_vec(min));
        payload[4..6].copy_from_slice(&<i16>::to_le_byte_vec(max));

        self.device.set(u8::from(ServoV2BrickletFunction::SetDegree), payload)
    }

    /// Returns the minimum and maximum degree for the specified servo channel as set by
    /// [`set_degree`].
    pub fn get_degree(&self, servo_channel: u16) -> ConvertingReceiver<Degree> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetDegree), payload)
    }

    /// Sets the period of the specified servo channel in µs.
    ///
    /// Usually, servos are controlled with a
    /// [PWM](https://en.wikipedia.org/wiki/Pulse-width_modulation)__. Different
    /// servos expect PWMs with different periods. Most servos run well with a
    /// period of about 20ms.
    ///
    /// If your servo comes with a datasheet that specifies a period, you should
    /// set it accordingly. If you don't have a datasheet and you have no idea
    /// what the correct period is, the default value (19.5ms) will most likely
    /// work fine.
    ///
    /// The minimum possible period is 1µs and the maximum is 1000000µs.
    ///
    /// The default value is 19.5ms (19500µs).
    pub fn set_period(&self, servo_channel: u16, period: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 6];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));
        payload[2..6].copy_from_slice(&<u32>::to_le_byte_vec(period));

        self.device.set(u8::from(ServoV2BrickletFunction::SetPeriod), payload)
    }

    /// Returns the period for the specified servo channel as set by [`set_period`].
    pub fn get_period(&self, servo_channel: u16) -> ConvertingReceiver<u32> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetPeriod), payload)
    }

    /// Returns the current consumption of the specified servo channel in mA.
    pub fn get_servo_current(&self, servo_channel: u16) -> ConvertingReceiver<u16> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetServoCurrent), payload)
    }

    /// Sets the averaging duration of the current measurement for the specified servo channel in ms.
    pub fn set_servo_current_configuration(&self, servo_channel: u16, averaging_duration: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 3];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));
        payload[2..3].copy_from_slice(&<u8>::to_le_byte_vec(averaging_duration));

        self.device.set(u8::from(ServoV2BrickletFunction::SetServoCurrentConfiguration), payload)
    }

    /// Returns the servo current configuration for the specified servo channel as set
    /// by [`set_servo_current_configuration`].
    pub fn get_servo_current_configuration(&self, servo_channel: u16) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetServoCurrentConfiguration), payload)
    }

    /// Sets the averaging duration of the input voltage measurement for the specified servo channel in ms.
    pub fn set_input_voltage_configuration(&self, averaging_duration: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(averaging_duration));

        self.device.set(u8::from(ServoV2BrickletFunction::SetInputVoltageConfiguration), payload)
    }

    /// Returns the input voltage configuration as set by [`set_input_voltage_configuration`].
    pub fn get_input_voltage_configuration(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetInputVoltageConfiguration), payload)
    }

    /// Returns the current consumption of all servos together in mA.
    pub fn get_overall_current(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetOverallCurrent), payload)
    }

    /// Returns the input voltage in mV. The input voltage is
    /// given via the black power input connector on the Servo Brick.
    pub fn get_input_voltage(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetInputVoltage), payload)
    }

    /// Sets an offset value (in mA) for each channel.
    ///
    /// Note: On delivery the Servo Bricklet 2.0 is already calibrated.
    pub fn set_current_calibration(&self, offset: [i16; 10]) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 20];
        payload[0..20].copy_from_slice(&<[i16; 10]>::to_le_byte_vec(offset));

        self.device.set(u8::from(ServoV2BrickletFunction::SetCurrentCalibration), payload)
    }

    /// Returns the current calibration as set by [`set_current_calibration`].
    pub fn get_current_calibration(&self) -> ConvertingReceiver<[i16; 10]> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetCurrentCalibration), payload)
    }

    /// Enable/Disable [`get_position_reached_callback_receiver`] receiver.
    pub fn set_position_reached_callback_configuration(&self, servo_channel: u16, enabled: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 3];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));
        payload[2..3].copy_from_slice(&<bool>::to_le_byte_vec(enabled));

        self.device.set(u8::from(ServoV2BrickletFunction::SetPositionReachedCallbackConfiguration), payload)
    }

    /// Returns the receiver configuration as set by
    /// [`set_position_reached_callback_configuration`].
    pub fn get_position_reached_callback_configuration(&self, servo_channel: u16) -> ConvertingReceiver<bool> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(servo_channel));

        self.device.get(u8::from(ServoV2BrickletFunction::GetPositionReachedCallbackConfiguration), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Bricklet side. All
    /// Bricks have a similar function that returns the errors on the Brick side.
    pub fn get_spitfp_error_count(&self) -> ConvertingReceiver<SpitfpErrorCount> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetSpitfpErrorCount), payload)
    }

    /// Sets the bootloader mode and returns the status after the requested
    /// mode change was instigated.
    ///
    /// You can change from bootloader mode to firmware mode and vice versa. A change
    /// from bootloader mode to firmware mode will only take place if the entry function,
    /// device identifier and CRC are present and correct.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// Associated constants:
    /// * SERVO_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_STATUS_OK
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
    pub fn set_bootloader_mode(&self, mode: u8) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(mode));

        self.device.get(u8::from(ServoV2BrickletFunction::SetBootloaderMode), payload)
    }

    /// Returns the current bootloader mode, see [`set_bootloader_mode`].
    ///
    /// Associated constants:
    /// * SERVO_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* SERVO_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    pub fn get_bootloader_mode(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetBootloaderMode), payload)
    }

    /// Sets the firmware pointer for [`write_firmware`]. The pointer has
    /// to be increased by chunks of size 64. The data is written to flash
    /// every 4 chunks (which equals to one page of size 256).
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn set_write_firmware_pointer(&self, pointer: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(pointer));

        self.device.set(u8::from(ServoV2BrickletFunction::SetWriteFirmwarePointer), payload)
    }

    /// Writes 64 Bytes of firmware at the position as written by
    /// [`set_write_firmware_pointer`] before. The firmware is written
    /// to flash every 4 chunks.
    ///
    /// You can only write firmware in bootloader mode.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn write_firmware(&self, data: [u8; 64]) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 64];
        payload[0..64].copy_from_slice(&<[u8; 64]>::to_le_byte_vec(data));

        self.device.get(u8::from(ServoV2BrickletFunction::WriteFirmware), payload)
    }

    /// Sets the status LED configuration. By default the LED shows
    /// communication traffic between Brick and Bricklet, it flickers once
    /// for every 10 received data packets.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
    ///
    /// Associated constants:
    /// * SERVO_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* SERVO_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* SERVO_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* SERVO_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn set_status_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(ServoV2BrickletFunction::SetStatusLedConfig), payload)
    }

    /// Returns the configuration as set by [`set_status_led_config`]
    ///
    /// Associated constants:
    /// * SERVO_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* SERVO_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* SERVO_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* SERVO_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn get_status_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetStatusLedConfig), payload)
    }

    /// Returns the temperature as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has bad
    /// accuracy. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Bricklet. All configurations
    /// will be lost.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(ServoV2BrickletFunction::Reset), payload)
    }

    /// Writes a new UID into flash. If you want to set a new UID
    /// you have to decode the Base58 encoded UID string into an
    /// integer first.
    ///
    /// We recommend that you use Brick Viewer to change the UID.
    pub fn write_uid(&self, uid: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(uid));

        self.device.set(u8::from(ServoV2BrickletFunction::WriteUid), payload)
    }

    /// Returns the current UID as an integer. Encode as
    /// Base58 to get the usual string version.
    pub fn read_uid(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::ReadUid), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port).
    /// A Bricklet connected to an [Isolator Bricklet](isolator_bricklet) is always at
    /// position 'z'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ServoV2BrickletFunction::GetIdentity), payload)
    }
}