1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
/* ***********************************************************
 * This file was automatically generated on 2024-02-27.      *
 *                                                           *
 * Rust Bindings Version 2.0.21                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Communicates with CAN bus devices.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/CANV2_Bricklet_Rust.html).
use crate::{
    byte_converter::*,
    converting_callback_receiver::ConvertingCallbackReceiver,
    converting_high_level_callback_receiver::ConvertingHighLevelCallbackReceiver,
    converting_receiver::{BrickletRecvTimeoutError, ConvertingReceiver},
    device::*,
    ip_connection::GetRequestSender,
    low_level_traits::*,
};
pub enum CanV2BrickletFunction {
    WriteFrameLowLevel,
    ReadFrameLowLevel,
    SetFrameReadCallbackConfiguration,
    GetFrameReadCallbackConfiguration,
    SetTransceiverConfiguration,
    GetTransceiverConfiguration,
    SetQueueConfigurationLowLevel,
    GetQueueConfigurationLowLevel,
    SetReadFilterConfiguration,
    GetReadFilterConfiguration,
    GetErrorLogLowLevel,
    SetCommunicationLedConfig,
    GetCommunicationLedConfig,
    SetErrorLedConfig,
    GetErrorLedConfig,
    SetFrameReadableCallbackConfiguration,
    GetFrameReadableCallbackConfiguration,
    SetErrorOccurredCallbackConfiguration,
    GetErrorOccurredCallbackConfiguration,
    GetSpitfpErrorCount,
    SetBootloaderMode,
    GetBootloaderMode,
    SetWriteFirmwarePointer,
    WriteFirmware,
    SetStatusLedConfig,
    GetStatusLedConfig,
    GetChipTemperature,
    Reset,
    WriteUid,
    ReadUid,
    GetIdentity,
    CallbackFrameReadLowLevel,
    CallbackFrameReadable,
    CallbackErrorOccurred,
}
impl From<CanV2BrickletFunction> for u8 {
    fn from(fun: CanV2BrickletFunction) -> Self {
        match fun {
            CanV2BrickletFunction::WriteFrameLowLevel => 1,
            CanV2BrickletFunction::ReadFrameLowLevel => 2,
            CanV2BrickletFunction::SetFrameReadCallbackConfiguration => 3,
            CanV2BrickletFunction::GetFrameReadCallbackConfiguration => 4,
            CanV2BrickletFunction::SetTransceiverConfiguration => 5,
            CanV2BrickletFunction::GetTransceiverConfiguration => 6,
            CanV2BrickletFunction::SetQueueConfigurationLowLevel => 7,
            CanV2BrickletFunction::GetQueueConfigurationLowLevel => 8,
            CanV2BrickletFunction::SetReadFilterConfiguration => 9,
            CanV2BrickletFunction::GetReadFilterConfiguration => 10,
            CanV2BrickletFunction::GetErrorLogLowLevel => 11,
            CanV2BrickletFunction::SetCommunicationLedConfig => 12,
            CanV2BrickletFunction::GetCommunicationLedConfig => 13,
            CanV2BrickletFunction::SetErrorLedConfig => 14,
            CanV2BrickletFunction::GetErrorLedConfig => 15,
            CanV2BrickletFunction::SetFrameReadableCallbackConfiguration => 17,
            CanV2BrickletFunction::GetFrameReadableCallbackConfiguration => 18,
            CanV2BrickletFunction::SetErrorOccurredCallbackConfiguration => 20,
            CanV2BrickletFunction::GetErrorOccurredCallbackConfiguration => 21,
            CanV2BrickletFunction::GetSpitfpErrorCount => 234,
            CanV2BrickletFunction::SetBootloaderMode => 235,
            CanV2BrickletFunction::GetBootloaderMode => 236,
            CanV2BrickletFunction::SetWriteFirmwarePointer => 237,
            CanV2BrickletFunction::WriteFirmware => 238,
            CanV2BrickletFunction::SetStatusLedConfig => 239,
            CanV2BrickletFunction::GetStatusLedConfig => 240,
            CanV2BrickletFunction::GetChipTemperature => 242,
            CanV2BrickletFunction::Reset => 243,
            CanV2BrickletFunction::WriteUid => 248,
            CanV2BrickletFunction::ReadUid => 249,
            CanV2BrickletFunction::GetIdentity => 255,
            CanV2BrickletFunction::CallbackFrameReadLowLevel => 16,
            CanV2BrickletFunction::CallbackFrameReadable => 19,
            CanV2BrickletFunction::CallbackErrorOccurred => 22,
        }
    }
}
pub const CAN_V2_BRICKLET_FRAME_TYPE_STANDARD_DATA: u8 = 0;
pub const CAN_V2_BRICKLET_FRAME_TYPE_STANDARD_REMOTE: u8 = 1;
pub const CAN_V2_BRICKLET_FRAME_TYPE_EXTENDED_DATA: u8 = 2;
pub const CAN_V2_BRICKLET_FRAME_TYPE_EXTENDED_REMOTE: u8 = 3;
pub const CAN_V2_BRICKLET_TRANSCEIVER_MODE_NORMAL: u8 = 0;
pub const CAN_V2_BRICKLET_TRANSCEIVER_MODE_LOOPBACK: u8 = 1;
pub const CAN_V2_BRICKLET_TRANSCEIVER_MODE_READ_ONLY: u8 = 2;
pub const CAN_V2_BRICKLET_FILTER_MODE_ACCEPT_ALL: u8 = 0;
pub const CAN_V2_BRICKLET_FILTER_MODE_MATCH_STANDARD_ONLY: u8 = 1;
pub const CAN_V2_BRICKLET_FILTER_MODE_MATCH_EXTENDED_ONLY: u8 = 2;
pub const CAN_V2_BRICKLET_FILTER_MODE_MATCH_STANDARD_AND_EXTENDED: u8 = 3;
pub const CAN_V2_BRICKLET_TRANSCEIVER_STATE_ACTIVE: u8 = 0;
pub const CAN_V2_BRICKLET_TRANSCEIVER_STATE_PASSIVE: u8 = 1;
pub const CAN_V2_BRICKLET_TRANSCEIVER_STATE_DISABLED: u8 = 2;
pub const CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_OFF: u8 = 0;
pub const CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_ON: u8 = 1;
pub const CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_SHOW_COMMUNICATION: u8 = 3;
pub const CAN_V2_BRICKLET_ERROR_LED_CONFIG_OFF: u8 = 0;
pub const CAN_V2_BRICKLET_ERROR_LED_CONFIG_ON: u8 = 1;
pub const CAN_V2_BRICKLET_ERROR_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const CAN_V2_BRICKLET_ERROR_LED_CONFIG_SHOW_TRANSCEIVER_STATE: u8 = 3;
pub const CAN_V2_BRICKLET_ERROR_LED_CONFIG_SHOW_ERROR: u8 = 4;
pub const CAN_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER: u8 = 0;
pub const CAN_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE: u8 = 1;
pub const CAN_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT: u8 = 2;
pub const CAN_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT: u8 = 3;
pub const CAN_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT: u8 = 4;
pub const CAN_V2_BRICKLET_BOOTLOADER_STATUS_OK: u8 = 0;
pub const CAN_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE: u8 = 1;
pub const CAN_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE: u8 = 2;
pub const CAN_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT: u8 = 3;
pub const CAN_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT: u8 = 4;
pub const CAN_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH: u8 = 5;
pub const CAN_V2_BRICKLET_STATUS_LED_CONFIG_OFF: u8 = 0;
pub const CAN_V2_BRICKLET_STATUS_LED_CONFIG_ON: u8 = 1;
pub const CAN_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const CAN_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS: u8 = 3;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct WriteFrameLowLevel {
    pub success: bool,
}
impl FromByteSlice for WriteFrameLowLevel {
    fn bytes_expected() -> usize { 1 }
    fn from_le_byte_slice(bytes: &[u8]) -> WriteFrameLowLevel { WriteFrameLowLevel { success: <bool>::from_le_byte_slice(&bytes[0..1]) } }
}
impl LowLevelWrite<WriteFrameResult> for WriteFrameLowLevel {
    fn ll_message_written(&self) -> usize { 15 }

    fn get_result(&self) -> WriteFrameResult { WriteFrameResult { success: self.success } }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct ReadFrameLowLevel {
    pub success: bool,
    pub frame_type: u8,
    pub identifier: u32,
    pub data_length: u8,
    pub data_data: [u8; 15],
}
impl FromByteSlice for ReadFrameLowLevel {
    fn bytes_expected() -> usize { 22 }
    fn from_le_byte_slice(bytes: &[u8]) -> ReadFrameLowLevel {
        ReadFrameLowLevel {
            success: <bool>::from_le_byte_slice(&bytes[0..1]),
            frame_type: <u8>::from_le_byte_slice(&bytes[1..2]),
            identifier: <u32>::from_le_byte_slice(&bytes[2..6]),
            data_length: <u8>::from_le_byte_slice(&bytes[6..7]),
            data_data: <[u8; 15]>::from_le_byte_slice(&bytes[7..22]),
        }
    }
}
impl LowLevelRead<u8, ReadFrameResult> for ReadFrameLowLevel {
    fn ll_message_length(&self) -> usize { self.data_length as usize }

    fn ll_message_chunk_offset(&self) -> usize { 0 }

    fn ll_message_chunk_data(&self) -> &[u8] { &self.data_data }

    fn get_result(&self) -> ReadFrameResult {
        ReadFrameResult { success: self.success, frame_type: self.frame_type, identifier: self.identifier }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TransceiverConfiguration {
    pub baud_rate: u32,
    pub sample_point: u16,
    pub transceiver_mode: u8,
}
impl FromByteSlice for TransceiverConfiguration {
    fn bytes_expected() -> usize { 7 }
    fn from_le_byte_slice(bytes: &[u8]) -> TransceiverConfiguration {
        TransceiverConfiguration {
            baud_rate: <u32>::from_le_byte_slice(&bytes[0..4]),
            sample_point: <u16>::from_le_byte_slice(&bytes[4..6]),
            transceiver_mode: <u8>::from_le_byte_slice(&bytes[6..7]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SetQueueConfigurationLowLevel {}
impl FromByteSlice for SetQueueConfigurationLowLevel {
    fn bytes_expected() -> usize { 0 }
    fn from_le_byte_slice(_bytes: &[u8]) -> SetQueueConfigurationLowLevel { SetQueueConfigurationLowLevel {} }
}
impl LowLevelWrite<SetQueueConfigurationResult> for SetQueueConfigurationLowLevel {
    fn ll_message_written(&self) -> usize { 32 }

    fn get_result(&self) -> SetQueueConfigurationResult { SetQueueConfigurationResult {} }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct QueueConfigurationLowLevel {
    pub write_buffer_size: u8,
    pub write_buffer_timeout: i32,
    pub write_backlog_size: u16,
    pub read_buffer_sizes_length: u8,
    pub read_buffer_sizes_data: [i8; 32],
    pub read_backlog_size: u16,
}
impl FromByteSlice for QueueConfigurationLowLevel {
    fn bytes_expected() -> usize { 42 }
    fn from_le_byte_slice(bytes: &[u8]) -> QueueConfigurationLowLevel {
        QueueConfigurationLowLevel {
            write_buffer_size: <u8>::from_le_byte_slice(&bytes[0..1]),
            write_buffer_timeout: <i32>::from_le_byte_slice(&bytes[1..5]),
            write_backlog_size: <u16>::from_le_byte_slice(&bytes[5..7]),
            read_buffer_sizes_length: <u8>::from_le_byte_slice(&bytes[7..8]),
            read_buffer_sizes_data: <[i8; 32]>::from_le_byte_slice(&bytes[8..40]),
            read_backlog_size: <u16>::from_le_byte_slice(&bytes[40..42]),
        }
    }
}
impl LowLevelRead<i8, QueueConfigurationResult> for QueueConfigurationLowLevel {
    fn ll_message_length(&self) -> usize { self.read_buffer_sizes_length as usize }

    fn ll_message_chunk_offset(&self) -> usize { 0 }

    fn ll_message_chunk_data(&self) -> &[i8] { &self.read_buffer_sizes_data }

    fn get_result(&self) -> QueueConfigurationResult {
        QueueConfigurationResult {
            write_buffer_size: self.write_buffer_size,
            write_buffer_timeout: self.write_buffer_timeout,
            write_backlog_size: self.write_backlog_size,
            read_backlog_size: self.read_backlog_size,
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct ReadFilterConfiguration {
    pub filter_mode: u8,
    pub filter_mask: u32,
    pub filter_identifier: u32,
}
impl FromByteSlice for ReadFilterConfiguration {
    fn bytes_expected() -> usize { 9 }
    fn from_le_byte_slice(bytes: &[u8]) -> ReadFilterConfiguration {
        ReadFilterConfiguration {
            filter_mode: <u8>::from_le_byte_slice(&bytes[0..1]),
            filter_mask: <u32>::from_le_byte_slice(&bytes[1..5]),
            filter_identifier: <u32>::from_le_byte_slice(&bytes[5..9]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct ErrorLogLowLevel {
    pub transceiver_state: u8,
    pub transceiver_write_error_level: u8,
    pub transceiver_read_error_level: u8,
    pub transceiver_stuffing_error_count: u32,
    pub transceiver_format_error_count: u32,
    pub transceiver_ack_error_count: u32,
    pub transceiver_bit1_error_count: u32,
    pub transceiver_bit0_error_count: u32,
    pub transceiver_crc_error_count: u32,
    pub write_buffer_timeout_error_count: u32,
    pub read_buffer_overflow_error_count: u32,
    pub read_buffer_overflow_error_occurred_length: u8,
    pub read_buffer_overflow_error_occurred_data: [bool; 32],
    pub read_backlog_overflow_error_count: u32,
}
impl FromByteSlice for ErrorLogLowLevel {
    fn bytes_expected() -> usize { 44 }
    fn from_le_byte_slice(bytes: &[u8]) -> ErrorLogLowLevel {
        ErrorLogLowLevel {
            transceiver_state: <u8>::from_le_byte_slice(&bytes[0..1]),
            transceiver_write_error_level: <u8>::from_le_byte_slice(&bytes[1..2]),
            transceiver_read_error_level: <u8>::from_le_byte_slice(&bytes[2..3]),
            transceiver_stuffing_error_count: <u32>::from_le_byte_slice(&bytes[3..7]),
            transceiver_format_error_count: <u32>::from_le_byte_slice(&bytes[7..11]),
            transceiver_ack_error_count: <u32>::from_le_byte_slice(&bytes[11..15]),
            transceiver_bit1_error_count: <u32>::from_le_byte_slice(&bytes[15..19]),
            transceiver_bit0_error_count: <u32>::from_le_byte_slice(&bytes[19..23]),
            transceiver_crc_error_count: <u32>::from_le_byte_slice(&bytes[23..27]),
            write_buffer_timeout_error_count: <u32>::from_le_byte_slice(&bytes[27..31]),
            read_buffer_overflow_error_count: <u32>::from_le_byte_slice(&bytes[31..35]),
            read_buffer_overflow_error_occurred_length: <u8>::from_le_byte_slice(&bytes[35..36]),
            read_buffer_overflow_error_occurred_data: <[bool; 32]>::from_le_byte_slice(&bytes[36..40]),
            read_backlog_overflow_error_count: <u32>::from_le_byte_slice(&bytes[40..44]),
        }
    }
}
impl LowLevelRead<bool, ErrorLogResult> for ErrorLogLowLevel {
    fn ll_message_length(&self) -> usize { self.read_buffer_overflow_error_occurred_length as usize }

    fn ll_message_chunk_offset(&self) -> usize { 0 }

    fn ll_message_chunk_data(&self) -> &[bool] { &self.read_buffer_overflow_error_occurred_data }

    fn get_result(&self) -> ErrorLogResult {
        ErrorLogResult {
            transceiver_state: self.transceiver_state,
            transceiver_write_error_level: self.transceiver_write_error_level,
            transceiver_read_error_level: self.transceiver_read_error_level,
            transceiver_stuffing_error_count: self.transceiver_stuffing_error_count,
            transceiver_format_error_count: self.transceiver_format_error_count,
            transceiver_ack_error_count: self.transceiver_ack_error_count,
            transceiver_bit1_error_count: self.transceiver_bit1_error_count,
            transceiver_bit0_error_count: self.transceiver_bit0_error_count,
            transceiver_crc_error_count: self.transceiver_crc_error_count,
            write_buffer_timeout_error_count: self.write_buffer_timeout_error_count,
            read_buffer_overflow_error_count: self.read_buffer_overflow_error_count,
            read_backlog_overflow_error_count: self.read_backlog_overflow_error_count,
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct FrameReadLowLevelEvent {
    pub frame_type: u8,
    pub identifier: u32,
    pub data_length: u8,
    pub data_data: [u8; 15],
}
impl FromByteSlice for FrameReadLowLevelEvent {
    fn bytes_expected() -> usize { 21 }
    fn from_le_byte_slice(bytes: &[u8]) -> FrameReadLowLevelEvent {
        FrameReadLowLevelEvent {
            frame_type: <u8>::from_le_byte_slice(&bytes[0..1]),
            identifier: <u32>::from_le_byte_slice(&bytes[1..5]),
            data_length: <u8>::from_le_byte_slice(&bytes[5..6]),
            data_data: <[u8; 15]>::from_le_byte_slice(&bytes[6..21]),
        }
    }
}
impl LowLevelRead<u8, FrameReadResult> for FrameReadLowLevelEvent {
    fn ll_message_length(&self) -> usize { self.data_length as usize }

    fn ll_message_chunk_offset(&self) -> usize { 0 }

    fn ll_message_chunk_data(&self) -> &[u8] { &self.data_data }

    fn get_result(&self) -> FrameReadResult { FrameReadResult { frame_type: self.frame_type, identifier: self.identifier } }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct WriteFrameResult {
    pub success: bool,
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct ReadFrameResult {
    pub success: bool,
    pub frame_type: u8,
    pub identifier: u32,
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SetQueueConfigurationResult {}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct QueueConfigurationResult {
    pub write_buffer_size: u8,
    pub write_buffer_timeout: i32,
    pub write_backlog_size: u16,
    pub read_backlog_size: u16,
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct ErrorLogResult {
    pub transceiver_state: u8,
    pub transceiver_write_error_level: u8,
    pub transceiver_read_error_level: u8,
    pub transceiver_stuffing_error_count: u32,
    pub transceiver_format_error_count: u32,
    pub transceiver_ack_error_count: u32,
    pub transceiver_bit1_error_count: u32,
    pub transceiver_bit0_error_count: u32,
    pub transceiver_crc_error_count: u32,
    pub write_buffer_timeout_error_count: u32,
    pub read_buffer_overflow_error_count: u32,
    pub read_backlog_overflow_error_count: u32,
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct FrameReadResult {
    pub frame_type: u8,
    pub identifier: u32,
}

/// Communicates with CAN bus devices
#[derive(Clone)]
pub struct CanV2Bricklet {
    device: Device,
}
impl CanV2Bricklet {
    pub const DEVICE_IDENTIFIER: u16 = 2107;
    pub const DEVICE_DISPLAY_NAME: &'static str = "CAN Bricklet 2.0";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> CanV2Bricklet {
        let mut result = CanV2Bricklet { device: Device::new([2, 0, 1], uid, req_sender, 6) };
        result.device.response_expected[u8::from(CanV2BrickletFunction::WriteFrameLowLevel) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::ReadFrameLowLevel) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetFrameReadCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetFrameReadCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetTransceiverConfiguration) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetTransceiverConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetQueueConfigurationLowLevel) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetQueueConfigurationLowLevel) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetReadFilterConfiguration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetReadFilterConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetErrorLogLowLevel) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetCommunicationLedConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetCommunicationLedConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetErrorLedConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetErrorLedConfig) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetFrameReadableCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetFrameReadableCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetErrorOccurredCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetErrorOccurredCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetSpitfpErrorCount) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetBootloaderMode) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetBootloaderMode) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetWriteFirmwarePointer) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(CanV2BrickletFunction::WriteFirmware) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::SetStatusLedConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetStatusLedConfig) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetChipTemperature) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(CanV2BrickletFunction::WriteUid) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(CanV2BrickletFunction::ReadUid) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(CanV2BrickletFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::can_v2_bricklet::CanV2Bricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::can_v2_bricklet::CanV2Bricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: CanV2BrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(&mut self, fun: CanV2BrickletFunction, response_expected: bool) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// See [`get_frame_read_callback_receiver`](crate::can_v2::CANV2::get_frame_read_callback_receiver)
    pub fn get_frame_read_low_level_callback_receiver(&self) -> ConvertingCallbackReceiver<FrameReadLowLevelEvent> {
        self.device.get_callback_receiver(u8::from(CanV2BrickletFunction::CallbackFrameReadLowLevel))
    }

    /// This receiver is triggered if a data or remote frame was received by the CAN
    /// transceiver.
    ///
    /// The ``identifier`` return value follows the identifier format described for
    /// [`write_frame`].
    ///
    /// For details on the ``data`` return value see [`read_frame`].
    ///
    /// A configurable read filter can be used to define which frames should be
    /// received by the CAN transceiver and put into the read queue (see
    /// [`set_read_filter_configuration`]).
    ///
    /// To enable this receiver, use [`set_frame_read_callback_configuration`].
    ///
    /// [`write_frame`]: #method.write_frame
    /// [`read_frame`]: #method.read_frame
    /// [`set_frame_read_callback_configuration`]: #method.set_frame_read_callback_configuration
    /// [`set_read_filter_configuration`]: #method.set_read_filter_configuration
    pub fn get_frame_read_callback_receiver(&self) -> ConvertingHighLevelCallbackReceiver<u8, FrameReadResult, FrameReadLowLevelEvent> {
        ConvertingHighLevelCallbackReceiver::new(
            self.device.get_callback_receiver(u8::from(CanV2BrickletFunction::CallbackFrameReadLowLevel)),
        )
    }

    /// This receiver is triggered if a data or remote frame was received by the CAN
    /// transceiver. The received frame can be read with [`read_frame`].
    /// If additional frames are received, but [`read_frame`] was not called yet, the receiver
    /// will not trigger again.
    ///
    /// A configurable read filter can be used to define which frames should be
    /// received by the CAN transceiver and put into the read queue (see
    /// [`set_read_filter_configuration`]).
    ///
    /// To enable this receiver, use [`set_frame_readable_callback_configuration`].
    ///
    ///
    /// .. versionadded:: 2.0.3$nbsp;(Plugin)
    pub fn get_frame_readable_callback_receiver(&self) -> ConvertingCallbackReceiver<()> {
        self.device.get_callback_receiver(u8::from(CanV2BrickletFunction::CallbackFrameReadable))
    }

    /// This receiver is triggered if any error occurred while writing, reading or transmitting CAN frames.
    ///
    /// The receiver is only triggered once until [`get_error_log`] is called. That function will return
    /// details abount the error(s) occurred.
    ///
    /// To enable this receiver, use [`set_error_occurred_callback_configuration`].
    ///
    ///
    /// .. versionadded:: 2.0.3$nbsp;(Plugin)
    pub fn get_error_occurred_callback_receiver(&self) -> ConvertingCallbackReceiver<()> {
        self.device.get_callback_receiver(u8::from(CanV2BrickletFunction::CallbackErrorOccurred))
    }

    /// Writes a data or remote frame to the write queue to be transmitted over the
    /// CAN transceiver.
    ///
    /// The Bricklet supports the standard 11-bit (CAN 2.0A) and the additional extended
    /// 29-bit (CAN 2.0B) identifiers. For standard frames the Bricklet uses bit 0 to 10
    /// from the ``identifier`` parameter as standard 11-bit identifier. For extended
    /// frames the Bricklet uses bit 0 to 28 from the ``identifier`` parameter as
    /// extended 29-bit identifier.
    ///
    /// The ``data`` parameter can be up to 15 bytes long. For data frames up to 8 bytes
    /// will be used as the actual data. The length (DLC) field in the data or remote
    /// frame will be set to the actual length of the ``data`` parameter. This allows
    /// to transmit data and remote frames with excess length. For remote frames only
    /// the length of the ``data`` parameter is used. The actual ``data`` bytes are
    /// ignored.
    ///
    /// Returns *true* if the frame was successfully added to the write queue. Returns
    /// *false* if the frame could not be added because write queue is already full or
    /// because the write buffer or the write backlog are configured with a size of
    /// zero (see [`set_queue_configuration`]).
    ///
    /// The write queue can overflow if frames are written to it at a higher rate
    /// than the Bricklet can transmitted them over the CAN transceiver. This may
    /// happen if the CAN transceiver is configured as read-only or is using a low baud
    /// rate (see [`set_transceiver_configuration`]). It can also happen if the CAN
    /// bus is congested and the frame cannot be transmitted because it constantly loses
    /// arbitration or because the CAN transceiver is currently disabled due to a high
    /// write error level (see [`get_error_log`]).
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_FRAME_TYPE_STANDARD_DATA
    ///	* CAN_V2_BRICKLET_FRAME_TYPE_STANDARD_REMOTE
    ///	* CAN_V2_BRICKLET_FRAME_TYPE_EXTENDED_DATA
    ///	* CAN_V2_BRICKLET_FRAME_TYPE_EXTENDED_REMOTE
    pub fn write_frame_low_level(
        &self,
        frame_type: u8,
        identifier: u32,
        data_length: u8,
        data_data: [u8; 15],
    ) -> ConvertingReceiver<WriteFrameLowLevel> {
        let mut payload = vec![0; 21];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(frame_type));
        payload[1..5].copy_from_slice(&<u32>::to_le_byte_vec(identifier));
        payload[5..6].copy_from_slice(&<u8>::to_le_byte_vec(data_length));
        payload[6..21].copy_from_slice(&<[u8; 15]>::to_le_byte_vec(data_data));

        self.device.get(u8::from(CanV2BrickletFunction::WriteFrameLowLevel), payload)
    }

    /// Writes a data or remote frame to the write queue to be transmitted over the
    /// CAN transceiver.
    ///
    /// The Bricklet supports the standard 11-bit (CAN 2.0A) and the additional extended
    /// 29-bit (CAN 2.0B) identifiers. For standard frames the Bricklet uses bit 0 to 10
    /// from the ``identifier`` parameter as standard 11-bit identifier. For extended
    /// frames the Bricklet uses bit 0 to 28 from the ``identifier`` parameter as
    /// extended 29-bit identifier.
    ///
    /// The ``data`` parameter can be up to 15 bytes long. For data frames up to 8 bytes
    /// will be used as the actual data. The length (DLC) field in the data or remote
    /// frame will be set to the actual length of the ``data`` parameter. This allows
    /// to transmit data and remote frames with excess length. For remote frames only
    /// the length of the ``data`` parameter is used. The actual ``data`` bytes are
    /// ignored.
    ///
    /// Returns *true* if the frame was successfully added to the write queue. Returns
    /// *false* if the frame could not be added because write queue is already full or
    /// because the write buffer or the write backlog are configured with a size of
    /// zero (see [`set_queue_configuration`]).
    ///
    /// The write queue can overflow if frames are written to it at a higher rate
    /// than the Bricklet can transmitted them over the CAN transceiver. This may
    /// happen if the CAN transceiver is configured as read-only or is using a low baud
    /// rate (see [`set_transceiver_configuration`]). It can also happen if the CAN
    /// bus is congested and the frame cannot be transmitted because it constantly loses
    /// arbitration or because the CAN transceiver is currently disabled due to a high
    /// write error level (see [`get_error_log`]).
    pub fn write_frame(&self, frame_type: u8, identifier: u32, data: &[u8]) -> Result<bool, BrickletRecvTimeoutError> {
        let ll_result = self.device.set_high_level(0, data, 15, 15, &mut |length: usize, _chunk_offset: usize, chunk: &[u8]| {
            let chunk_length = chunk.len() as u16;
            let mut chunk_array = [<u8>::default(); 15];
            chunk_array[0..chunk_length as usize].copy_from_slice(&chunk);

            self.write_frame_low_level(frame_type, identifier, length as u8, chunk_array).recv()
        })?;
        Ok(ll_result.1.success)
    }

    /// Tries to read the next data or remote frame from the read queue and returns it.
    /// If a frame was successfully read, then the ``success`` return value is set to
    /// *true* and the other return values contain the frame. If the read queue is
    /// empty and no frame could be read, then the ``success`` return value is set to
    /// *false* and the other return values contain invalid data.
    ///
    /// The ``identifier`` return value follows the identifier format described for
    /// [`write_frame`].
    ///
    /// The ``data`` return value can be up to 15 bytes long. For data frames up to the
    /// first 8 bytes are the actual received data. All bytes after the 8th byte are
    /// always zero and only there to indicate the length of a data or remote frame
    /// with excess length. For remote frames the length of the ``data`` return value
    /// represents the requested length. The actual ``data`` bytes are always zero.
    ///
    /// A configurable read filter can be used to define which frames should be
    /// received by the CAN transceiver and put into the read queue (see
    /// [`set_read_filter_configuration`]).
    ///
    /// Instead of polling with this function, you can also use receivers. See the
    /// [`set_frame_read_callback_configuration`] function and the [`get_frame_read_callback_receiver`]
    /// callback.
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_FRAME_TYPE_STANDARD_DATA
    ///	* CAN_V2_BRICKLET_FRAME_TYPE_STANDARD_REMOTE
    ///	* CAN_V2_BRICKLET_FRAME_TYPE_EXTENDED_DATA
    ///	* CAN_V2_BRICKLET_FRAME_TYPE_EXTENDED_REMOTE
    pub fn read_frame_low_level(&self) -> ConvertingReceiver<ReadFrameLowLevel> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::ReadFrameLowLevel), payload)
    }

    /// Tries to read the next data or remote frame from the read queue and returns it.
    /// If a frame was successfully read, then the ``success`` return value is set to
    /// *true* and the other return values contain the frame. If the read queue is
    /// empty and no frame could be read, then the ``success`` return value is set to
    /// *false* and the other return values contain invalid data.
    ///
    /// The ``identifier`` return value follows the identifier format described for
    /// [`write_frame`].
    ///
    /// The ``data`` return value can be up to 15 bytes long. For data frames up to the
    /// first 8 bytes are the actual received data. All bytes after the 8th byte are
    /// always zero and only there to indicate the length of a data or remote frame
    /// with excess length. For remote frames the length of the ``data`` return value
    /// represents the requested length. The actual ``data`` bytes are always zero.
    ///
    /// A configurable read filter can be used to define which frames should be
    /// received by the CAN transceiver and put into the read queue (see
    /// [`set_read_filter_configuration`]).
    ///
    /// Instead of polling with this function, you can also use receivers. See the
    /// [`set_frame_read_callback_configuration`] function and the [`get_frame_read_callback_receiver`]
    /// callback.
    pub fn read_frame(&self) -> Result<(Vec<u8>, ReadFrameResult), BrickletRecvTimeoutError> {
        let ll_result = self.device.get_high_level(1, &mut || self.read_frame_low_level().recv())?;
        Ok((ll_result.0, ll_result.1))
    }

    /// Enables and disables the [`get_frame_read_callback_receiver`] receiver.
    ///
    /// By default the receiver is disabled. Enabling this receiver will disable the [`get_frame_readable_callback_receiver`] receiver.
    pub fn set_frame_read_callback_configuration(&self, enabled: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(enabled));

        self.device.set(u8::from(CanV2BrickletFunction::SetFrameReadCallbackConfiguration), payload)
    }

    /// Returns *true* if the [`get_frame_read_callback_receiver`] receiver is enabled, *false* otherwise.
    pub fn get_frame_read_callback_configuration(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetFrameReadCallbackConfiguration), payload)
    }

    /// Sets the transceiver configuration for the CAN bus communication.
    ///
    /// The CAN transceiver has three different modes:
    ///
    /// * Normal: Reads from and writes to the CAN bus and performs active bus
    ///   error detection and acknowledgement.
    /// * Loopback: All reads and writes are performed internally. The transceiver
    ///   is disconnected from the actual CAN bus.
    /// * Read-Only: Only reads from the CAN bus, but does neither active bus error
    ///   detection nor acknowledgement. Only the receiving part of the transceiver
    ///   is connected to the CAN bus.
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_TRANSCEIVER_MODE_NORMAL
    ///	* CAN_V2_BRICKLET_TRANSCEIVER_MODE_LOOPBACK
    ///	* CAN_V2_BRICKLET_TRANSCEIVER_MODE_READ_ONLY
    pub fn set_transceiver_configuration(&self, baud_rate: u32, sample_point: u16, transceiver_mode: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 7];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(baud_rate));
        payload[4..6].copy_from_slice(&<u16>::to_le_byte_vec(sample_point));
        payload[6..7].copy_from_slice(&<u8>::to_le_byte_vec(transceiver_mode));

        self.device.set(u8::from(CanV2BrickletFunction::SetTransceiverConfiguration), payload)
    }

    /// Returns the configuration as set by [`set_transceiver_configuration`].
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_TRANSCEIVER_MODE_NORMAL
    ///	* CAN_V2_BRICKLET_TRANSCEIVER_MODE_LOOPBACK
    ///	* CAN_V2_BRICKLET_TRANSCEIVER_MODE_READ_ONLY
    pub fn get_transceiver_configuration(&self) -> ConvertingReceiver<TransceiverConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetTransceiverConfiguration), payload)
    }

    /// Sets the write and read queue configuration.
    ///
    /// The CAN transceiver has 32 buffers in total in hardware for transmitting and
    /// receiving frames. Additionally, the Bricklet has a backlog for 768 frames in
    /// total in software. The buffers and the backlog can be freely assigned to the
    /// write and read queues.
    ///
    /// [`write_frame`] writes a frame into the write backlog. The Bricklet moves
    /// the frame from the backlog into a free write buffer. The CAN transceiver then
    /// transmits the frame from the write buffer to the CAN bus. If there are no
    /// write buffers (``write_buffer_size`` is zero) or there is no write backlog
    /// (``write_backlog_size`` is zero) then no frames can be transmitted and
    /// [`write_frame`] returns always *false*.
    ///
    /// The CAN transceiver receives a frame from the CAN bus and stores it into a
    /// free read buffer. The Bricklet moves the frame from the read buffer into the
    /// read backlog. [`read_frame`] reads the frame from the read backlog and
    /// returns it. If there are no read buffers (``read_buffer_sizes`` is empty) or
    /// there is no read backlog (``read_backlog_size`` is zero) then no frames can be
    /// received and [`read_frame`] returns always *false*.
    ///
    /// There can be multiple read buffers, because the CAN transceiver cannot receive
    /// data and remote frames into the same read buffer. A positive read buffer size
    /// represents a data frame read buffer and a negative read buffer size represents
    /// a remote frame read buffer. A read buffer size of zero is not allowed. By
    /// default the first read buffer is configured for data frames and the second read
    /// buffer is configured for remote frame. There can be up to 32 different read
    /// buffers, assuming that no write buffer is used. Each read buffer has its own
    /// filter configuration (see [`set_read_filter_configuration`]).
    ///
    /// A valid queue configuration fulfills these conditions::
    ///
    ///  write_buffer_size + abs(read_buffer_size_0) + abs(read_buffer_size_1) + ... + abs(read_buffer_size_31) <= 32
    ///  write_backlog_size + read_backlog_size <= 768
    ///
    /// The write buffer timeout has three different modes that define how a failed
    /// frame transmission should be handled:
    ///
    /// * Single-Shot (< 0): Only one transmission attempt will be made. If the
    ///   transmission fails then the frame is discarded.
    /// * Infinite (= 0): Infinite transmission attempts will be made. The frame will
    ///   never be discarded.
    /// * Milliseconds (> 0): A limited number of transmission attempts will be made.
    ///   If the frame could not be transmitted successfully after the configured
    ///   number of milliseconds then the frame is discarded.
    ///
    /// The current content of the queues is lost when this function is called.
    pub fn set_queue_configuration_low_level(
        &self,
        write_buffer_size: u8,
        write_buffer_timeout: i32,
        write_backlog_size: u16,
        read_buffer_sizes_length: u8,
        read_buffer_sizes_data: [i8; 32],
        read_backlog_size: u16,
    ) -> ConvertingReceiver<SetQueueConfigurationLowLevel> {
        let mut payload = vec![0; 42];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(write_buffer_size));
        payload[1..5].copy_from_slice(&<i32>::to_le_byte_vec(write_buffer_timeout));
        payload[5..7].copy_from_slice(&<u16>::to_le_byte_vec(write_backlog_size));
        payload[7..8].copy_from_slice(&<u8>::to_le_byte_vec(read_buffer_sizes_length));
        payload[8..40].copy_from_slice(&<[i8; 32]>::to_le_byte_vec(read_buffer_sizes_data));
        payload[40..42].copy_from_slice(&<u16>::to_le_byte_vec(read_backlog_size));

        self.device.set(u8::from(CanV2BrickletFunction::SetQueueConfigurationLowLevel), payload)
    }

    /// Sets the write and read queue configuration.
    ///
    /// The CAN transceiver has 32 buffers in total in hardware for transmitting and
    /// receiving frames. Additionally, the Bricklet has a backlog for 768 frames in
    /// total in software. The buffers and the backlog can be freely assigned to the
    /// write and read queues.
    ///
    /// [`write_frame`] writes a frame into the write backlog. The Bricklet moves
    /// the frame from the backlog into a free write buffer. The CAN transceiver then
    /// transmits the frame from the write buffer to the CAN bus. If there are no
    /// write buffers (``write_buffer_size`` is zero) or there is no write backlog
    /// (``write_backlog_size`` is zero) then no frames can be transmitted and
    /// [`write_frame`] returns always *false*.
    ///
    /// The CAN transceiver receives a frame from the CAN bus and stores it into a
    /// free read buffer. The Bricklet moves the frame from the read buffer into the
    /// read backlog. [`read_frame`] reads the frame from the read backlog and
    /// returns it. If there are no read buffers (``read_buffer_sizes`` is empty) or
    /// there is no read backlog (``read_backlog_size`` is zero) then no frames can be
    /// received and [`read_frame`] returns always *false*.
    ///
    /// There can be multiple read buffers, because the CAN transceiver cannot receive
    /// data and remote frames into the same read buffer. A positive read buffer size
    /// represents a data frame read buffer and a negative read buffer size represents
    /// a remote frame read buffer. A read buffer size of zero is not allowed. By
    /// default the first read buffer is configured for data frames and the second read
    /// buffer is configured for remote frame. There can be up to 32 different read
    /// buffers, assuming that no write buffer is used. Each read buffer has its own
    /// filter configuration (see [`set_read_filter_configuration`]).
    ///
    /// A valid queue configuration fulfills these conditions::
    ///
    ///  write_buffer_size + abs(read_buffer_size_0) + abs(read_buffer_size_1) + ... + abs(read_buffer_size_31) <= 32
    ///  write_backlog_size + read_backlog_size <= 768
    ///
    /// The write buffer timeout has three different modes that define how a failed
    /// frame transmission should be handled:
    ///
    /// * Single-Shot (< 0): Only one transmission attempt will be made. If the
    ///   transmission fails then the frame is discarded.
    /// * Infinite (= 0): Infinite transmission attempts will be made. The frame will
    ///   never be discarded.
    /// * Milliseconds (> 0): A limited number of transmission attempts will be made.
    ///   If the frame could not be transmitted successfully after the configured
    ///   number of milliseconds then the frame is discarded.
    ///
    /// The current content of the queues is lost when this function is called.
    pub fn set_queue_configuration(
        &self,
        write_buffer_size: u8,
        write_buffer_timeout: i32,
        write_backlog_size: u16,
        read_backlog_size: u16,
        read_buffer_sizes: &[i8],
    ) -> Result<(), BrickletRecvTimeoutError> {
        let _ll_result =
            self.device.set_high_level(2, read_buffer_sizes, 32, 32, &mut |length: usize, _chunk_offset: usize, chunk: &[i8]| {
                let chunk_length = chunk.len() as u16;
                let mut chunk_array = [<i8>::default(); 32];
                chunk_array[0..chunk_length as usize].copy_from_slice(&chunk);

                let result = self
                    .set_queue_configuration_low_level(
                        write_buffer_size,
                        write_buffer_timeout,
                        write_backlog_size,
                        length as u8,
                        chunk_array,
                        read_backlog_size,
                    )
                    .recv();
                if let Err(BrickletRecvTimeoutError::SuccessButResponseExpectedIsDisabled) = result {
                    Ok(Default::default())
                } else {
                    result
                }
            })?;
        Ok(())
    }

    /// Returns the queue configuration as set by [`set_queue_configuration`].
    pub fn get_queue_configuration_low_level(&self) -> ConvertingReceiver<QueueConfigurationLowLevel> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetQueueConfigurationLowLevel), payload)
    }

    /// Returns the queue configuration as set by [`set_queue_configuration`].
    pub fn get_queue_configuration(&self) -> Result<(Vec<i8>, QueueConfigurationResult), BrickletRecvTimeoutError> {
        let ll_result = self.device.get_high_level(3, &mut || self.get_queue_configuration_low_level().recv())?;
        Ok((ll_result.0, ll_result.1))
    }

    /// Set the read filter configuration for the given read buffer index. This can be
    /// used to define which frames should be received by the CAN transceiver and put
    /// into the read buffer.
    ///
    /// The read filter has four different modes that define if and how the filter mask
    /// and the filter identifier are applied:
    ///
    /// * Accept-All: All frames are received.
    /// * Match-Standard-Only: Only standard frames with a matching identifier are
    ///   received.
    /// * Match-Extended-Only: Only extended frames with a matching identifier are
    ///   received.
    /// * Match-Standard-And-Extended: Standard and extended frames with a matching
    ///   identifier are received.
    ///
    /// The filter mask and filter identifier are used as bit masks. Their usage
    /// depends on the mode:
    ///
    /// * Accept-All: Mask and identifier are ignored.
    /// * Match-Standard-Only: Bit 0 to 10 (11 bits) of filter mask and filter
    ///   identifier are used to match the 11-bit identifier of standard frames.
    /// * Match-Extended-Only: Bit 0 to 28 (29 bits) of filter mask and filter
    ///   identifier are used to match the 29-bit identifier of extended frames.
    /// * Match-Standard-And-Extended: Bit 18 to 28 (11 bits) of filter mask and filter
    ///   identifier are used to match the 11-bit identifier of standard frames, bit 0
    ///   to 17 (18 bits) are ignored in this case. Bit 0 to 28 (29 bits) of filter
    ///   mask and filter identifier are used to match the 29-bit identifier of extended
    ///   frames.
    ///
    /// The filter mask and filter identifier are applied in this way: The filter mask
    /// is used to select the frame identifier bits that should be compared to the
    /// corresponding filter identifier bits. All unselected bits are automatically
    /// accepted. All selected bits have to match the filter identifier to be accepted.
    /// If all bits for the selected mode are accepted then the frame is accepted and
    /// is added to the read buffer.
    ///
    ///  Filter Mask Bit| Filter Identifier Bit| Frame Identifier Bit| Result
    ///  --- | --- | --- | ---
    ///  0| X| X| Accept
    ///  1| 0| 0| Accept
    ///  1| 0| 1| Reject
    ///  1| 1| 0| Reject
    ///  1| 1| 1| Accept
    ///
    /// For example, to receive standard frames with identifier 0x123 only, the mode
    /// can be set to Match-Standard-Only with 0x7FF as mask and 0x123 as identifier.
    /// The mask of 0x7FF selects all 11 identifier bits for matching so that the
    /// identifier has to be exactly 0x123 to be accepted.
    ///
    /// To accept identifier 0x123 and identifier 0x456 at the same time, just set
    /// filter 2 to 0x456 and keep mask and filter 1 unchanged.
    ///
    /// There can be up to 32 different read filters configured at the same time,
    /// because there can be up to 32 read buffer (see [`set_queue_configuration`]).
    ///
    /// The default mode is accept-all for all read buffers.
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_FILTER_MODE_ACCEPT_ALL
    ///	* CAN_V2_BRICKLET_FILTER_MODE_MATCH_STANDARD_ONLY
    ///	* CAN_V2_BRICKLET_FILTER_MODE_MATCH_EXTENDED_ONLY
    ///	* CAN_V2_BRICKLET_FILTER_MODE_MATCH_STANDARD_AND_EXTENDED
    pub fn set_read_filter_configuration(
        &self,
        buffer_index: u8,
        filter_mode: u8,
        filter_mask: u32,
        filter_identifier: u32,
    ) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 10];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(buffer_index));
        payload[1..2].copy_from_slice(&<u8>::to_le_byte_vec(filter_mode));
        payload[2..6].copy_from_slice(&<u32>::to_le_byte_vec(filter_mask));
        payload[6..10].copy_from_slice(&<u32>::to_le_byte_vec(filter_identifier));

        self.device.set(u8::from(CanV2BrickletFunction::SetReadFilterConfiguration), payload)
    }

    /// Returns the read filter configuration as set by [`set_read_filter_configuration`].
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_FILTER_MODE_ACCEPT_ALL
    ///	* CAN_V2_BRICKLET_FILTER_MODE_MATCH_STANDARD_ONLY
    ///	* CAN_V2_BRICKLET_FILTER_MODE_MATCH_EXTENDED_ONLY
    ///	* CAN_V2_BRICKLET_FILTER_MODE_MATCH_STANDARD_AND_EXTENDED
    pub fn get_read_filter_configuration(&self, buffer_index: u8) -> ConvertingReceiver<ReadFilterConfiguration> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(buffer_index));

        self.device.get(u8::from(CanV2BrickletFunction::GetReadFilterConfiguration), payload)
    }

    /// Returns information about different kinds of errors.
    ///
    /// The write and read error levels indicate the current level of stuffing, form,
    /// acknowledgement, bit and checksum errors during CAN bus write and read
    /// operations. For each of this error kinds there is also an individual counter.
    ///
    /// When the write error level extends 255 then the CAN transceiver gets disabled
    /// and no frames can be transmitted or received anymore. The CAN transceiver will
    /// automatically be activated again after the CAN bus is idle for a while.
    ///
    /// The write buffer timeout, read buffer and backlog overflow counts represents the
    /// number of these errors:
    ///
    /// * A write buffer timeout occurs if a frame could not be transmitted before the
    ///   configured write buffer timeout expired (see [`set_queue_configuration`]).
    /// * A read buffer overflow occurs if a read buffer of the CAN transceiver
    ///   still contains the last received frame when the next frame arrives. In this
    ///   case the last received frame is lost. This happens if the CAN transceiver
    ///   receives more frames than the Bricklet can handle. Using the read filter
    ///   (see [`set_read_filter_configuration`]) can help to reduce the amount of
    ///   received frames. This count is not exact, but a lower bound, because the
    ///   Bricklet might not able detect all overflows if they occur in rapid succession.
    /// * A read backlog overflow occurs if the read backlog of the Bricklet is already
    ///   full when the next frame should be read from a read buffer of the CAN
    ///   transceiver. In this case the frame in the read buffer is lost. This
    ///   happens if the CAN transceiver receives more frames to be added to the read
    ///   backlog than are removed from the read backlog using the [`read_frame`]
    ///   function. Using the [`get_frame_read_callback_receiver`] receiver ensures that the read backlog
    ///   can not overflow.
    ///
    /// The read buffer overflow counter counts the overflows of all configured read
    /// buffers. Which read buffer exactly suffered from an overflow can be figured
    /// out from the read buffer overflow occurrence list
    /// (``read_buffer_overflow_error_occurred``). Reading the error log clears the
    /// occurence list.
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_TRANSCEIVER_STATE_ACTIVE
    ///	* CAN_V2_BRICKLET_TRANSCEIVER_STATE_PASSIVE
    ///	* CAN_V2_BRICKLET_TRANSCEIVER_STATE_DISABLED
    pub fn get_error_log_low_level(&self) -> ConvertingReceiver<ErrorLogLowLevel> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetErrorLogLowLevel), payload)
    }

    /// Returns information about different kinds of errors.
    ///
    /// The write and read error levels indicate the current level of stuffing, form,
    /// acknowledgement, bit and checksum errors during CAN bus write and read
    /// operations. For each of this error kinds there is also an individual counter.
    ///
    /// When the write error level extends 255 then the CAN transceiver gets disabled
    /// and no frames can be transmitted or received anymore. The CAN transceiver will
    /// automatically be activated again after the CAN bus is idle for a while.
    ///
    /// The write buffer timeout, read buffer and backlog overflow counts represents the
    /// number of these errors:
    ///
    /// * A write buffer timeout occurs if a frame could not be transmitted before the
    ///   configured write buffer timeout expired (see [`set_queue_configuration`]).
    /// * A read buffer overflow occurs if a read buffer of the CAN transceiver
    ///   still contains the last received frame when the next frame arrives. In this
    ///   case the last received frame is lost. This happens if the CAN transceiver
    ///   receives more frames than the Bricklet can handle. Using the read filter
    ///   (see [`set_read_filter_configuration`]) can help to reduce the amount of
    ///   received frames. This count is not exact, but a lower bound, because the
    ///   Bricklet might not able detect all overflows if they occur in rapid succession.
    /// * A read backlog overflow occurs if the read backlog of the Bricklet is already
    ///   full when the next frame should be read from a read buffer of the CAN
    ///   transceiver. In this case the frame in the read buffer is lost. This
    ///   happens if the CAN transceiver receives more frames to be added to the read
    ///   backlog than are removed from the read backlog using the [`read_frame`]
    ///   function. Using the [`get_frame_read_callback_receiver`] receiver ensures that the read backlog
    ///   can not overflow.
    ///
    /// The read buffer overflow counter counts the overflows of all configured read
    /// buffers. Which read buffer exactly suffered from an overflow can be figured
    /// out from the read buffer overflow occurrence list
    /// (``read_buffer_overflow_error_occurred``). Reading the error log clears the
    /// occurence list.
    pub fn get_error_log(&self) -> Result<(Vec<bool>, ErrorLogResult), BrickletRecvTimeoutError> {
        let ll_result = self.device.get_high_level(4, &mut || self.get_error_log_low_level().recv())?;
        Ok((ll_result.0, ll_result.1))
    }

    /// Sets the communication LED configuration. By default the LED shows
    /// CAN-Bus traffic, it flickers once for every 40 transmitted or received frames.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is off.
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_OFF
    ///	* CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_ON
    ///	* CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_SHOW_HEARTBEAT
    ///	* CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_SHOW_COMMUNICATION
    pub fn set_communication_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(CanV2BrickletFunction::SetCommunicationLedConfig), payload)
    }

    /// Returns the configuration as set by [`set_communication_led_config`]
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_OFF
    ///	* CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_ON
    ///	* CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_SHOW_HEARTBEAT
    ///	* CAN_V2_BRICKLET_COMMUNICATION_LED_CONFIG_SHOW_COMMUNICATION
    pub fn get_communication_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetCommunicationLedConfig), payload)
    }

    /// Sets the error LED configuration.
    ///
    /// By default (show-transceiver-state) the error LED turns on if the CAN
    /// transceiver is passive or disabled state (see [`get_error_log`]). If
    /// the CAN transceiver is in active state the LED turns off.
    ///
    /// If the LED is configured as show-error then the error LED turns on if any error
    /// occurs. If you call this function with the show-error option again, the LED will
    /// turn off until the next error occurs.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is off.
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_ERROR_LED_CONFIG_OFF
    ///	* CAN_V2_BRICKLET_ERROR_LED_CONFIG_ON
    ///	* CAN_V2_BRICKLET_ERROR_LED_CONFIG_SHOW_HEARTBEAT
    ///	* CAN_V2_BRICKLET_ERROR_LED_CONFIG_SHOW_TRANSCEIVER_STATE
    ///	* CAN_V2_BRICKLET_ERROR_LED_CONFIG_SHOW_ERROR
    pub fn set_error_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(CanV2BrickletFunction::SetErrorLedConfig), payload)
    }

    /// Returns the configuration as set by [`set_error_led_config`].
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_ERROR_LED_CONFIG_OFF
    ///	* CAN_V2_BRICKLET_ERROR_LED_CONFIG_ON
    ///	* CAN_V2_BRICKLET_ERROR_LED_CONFIG_SHOW_HEARTBEAT
    ///	* CAN_V2_BRICKLET_ERROR_LED_CONFIG_SHOW_TRANSCEIVER_STATE
    ///	* CAN_V2_BRICKLET_ERROR_LED_CONFIG_SHOW_ERROR
    pub fn get_error_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetErrorLedConfig), payload)
    }

    /// Enables and disables the [`get_frame_readable_callback_receiver`] receiver.
    ///
    /// By default the receiver is disabled. Enabling this receiver will disable the [`get_frame_read_callback_receiver`] receiver.
    ///
    ///
    /// .. versionadded:: 2.0.3$nbsp;(Plugin)
    pub fn set_frame_readable_callback_configuration(&self, enabled: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(enabled));

        self.device.set(u8::from(CanV2BrickletFunction::SetFrameReadableCallbackConfiguration), payload)
    }

    /// Returns *true* if the [`get_frame_readable_callback_receiver`] receiver is enabled, *false* otherwise.
    ///
    ///
    /// .. versionadded:: 2.0.3$nbsp;(Plugin)
    pub fn get_frame_readable_callback_configuration(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetFrameReadableCallbackConfiguration), payload)
    }

    /// Enables and disables the [`get_error_occurred_callback_receiver`] receiver.
    ///
    /// By default the receiver is disabled.
    ///
    ///
    /// .. versionadded:: 2.0.3$nbsp;(Plugin)
    pub fn set_error_occurred_callback_configuration(&self, enabled: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(enabled));

        self.device.set(u8::from(CanV2BrickletFunction::SetErrorOccurredCallbackConfiguration), payload)
    }

    /// Returns *true* if the [`get_error_occurred_callback_receiver`] receiver is enabled, *false* otherwise.
    ///
    ///
    /// .. versionadded:: 2.0.3$nbsp;(Plugin)
    pub fn get_error_occurred_callback_configuration(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetErrorOccurredCallbackConfiguration), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Bricklet side. All
    /// Bricks have a similar function that returns the errors on the Brick side.
    pub fn get_spitfp_error_count(&self) -> ConvertingReceiver<SpitfpErrorCount> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetSpitfpErrorCount), payload)
    }

    /// Sets the bootloader mode and returns the status after the requested
    /// mode change was instigated.
    ///
    /// You can change from bootloader mode to firmware mode and vice versa. A change
    /// from bootloader mode to firmware mode will only take place if the entry function,
    /// device identifier and CRC are present and correct.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* CAN_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* CAN_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* CAN_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* CAN_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    ///	* CAN_V2_BRICKLET_BOOTLOADER_STATUS_OK
    ///	* CAN_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
    ///	* CAN_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
    ///	* CAN_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
    ///	* CAN_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
    ///	* CAN_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
    pub fn set_bootloader_mode(&self, mode: u8) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(mode));

        self.device.get(u8::from(CanV2BrickletFunction::SetBootloaderMode), payload)
    }

    /// Returns the current bootloader mode, see [`set_bootloader_mode`].
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* CAN_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* CAN_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* CAN_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* CAN_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    pub fn get_bootloader_mode(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetBootloaderMode), payload)
    }

    /// Sets the firmware pointer for [`write_firmware`]. The pointer has
    /// to be increased by chunks of size 64. The data is written to flash
    /// every 4 chunks (which equals to one page of size 256).
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn set_write_firmware_pointer(&self, pointer: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(pointer));

        self.device.set(u8::from(CanV2BrickletFunction::SetWriteFirmwarePointer), payload)
    }

    /// Writes 64 Bytes of firmware at the position as written by
    /// [`set_write_firmware_pointer`] before. The firmware is written
    /// to flash every 4 chunks.
    ///
    /// You can only write firmware in bootloader mode.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn write_firmware(&self, data: [u8; 64]) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 64];
        payload[0..64].copy_from_slice(&<[u8; 64]>::to_le_byte_vec(data));

        self.device.get(u8::from(CanV2BrickletFunction::WriteFirmware), payload)
    }

    /// Sets the status LED configuration. By default the LED shows
    /// communication traffic between Brick and Bricklet, it flickers once
    /// for every 10 received data packets.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* CAN_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* CAN_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* CAN_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn set_status_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(CanV2BrickletFunction::SetStatusLedConfig), payload)
    }

    /// Returns the configuration as set by [`set_status_led_config`]
    ///
    /// Associated constants:
    /// * CAN_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* CAN_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* CAN_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* CAN_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn get_status_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetStatusLedConfig), payload)
    }

    /// Returns the temperature as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has bad
    /// accuracy. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Bricklet. All configurations
    /// will be lost.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(CanV2BrickletFunction::Reset), payload)
    }

    /// Writes a new UID into flash. If you want to set a new UID
    /// you have to decode the Base58 encoded UID string into an
    /// integer first.
    ///
    /// We recommend that you use Brick Viewer to change the UID.
    pub fn write_uid(&self, uid: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(uid));

        self.device.set(u8::from(CanV2BrickletFunction::WriteUid), payload)
    }

    /// Returns the current UID as an integer. Encode as
    /// Base58 to get the usual string version.
    pub fn read_uid(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::ReadUid), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port).
    /// A Bricklet connected to an [Isolator Bricklet](isolator_bricklet) is always at
    /// position 'z'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(CanV2BrickletFunction::GetIdentity), payload)
    }
}