1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
/* ***********************************************************
 * This file was automatically generated on 2019-11-25.      *
 *                                                           *
 * Rust Bindings Version 2.0.13                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Silently drives one bipolar stepper motor with up to 46V and 1.6A per phase.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricks/SilentStepper_Brick_Rust.html).
use crate::{
    byte_converter::*, converting_callback_receiver::ConvertingCallbackReceiver, converting_receiver::ConvertingReceiver, device::*,
    ip_connection::GetRequestSender,
};
pub enum SilentStepperBrickFunction {
    SetMaxVelocity,
    GetMaxVelocity,
    GetCurrentVelocity,
    SetSpeedRamping,
    GetSpeedRamping,
    FullBrake,
    SetCurrentPosition,
    GetCurrentPosition,
    SetTargetPosition,
    GetTargetPosition,
    SetSteps,
    GetSteps,
    GetRemainingSteps,
    SetStepConfiguration,
    GetStepConfiguration,
    DriveForward,
    DriveBackward,
    Stop,
    GetStackInputVoltage,
    GetExternalInputVoltage,
    SetMotorCurrent,
    GetMotorCurrent,
    Enable,
    Disable,
    IsEnabled,
    SetBasicConfiguration,
    GetBasicConfiguration,
    SetSpreadcycleConfiguration,
    GetSpreadcycleConfiguration,
    SetStealthConfiguration,
    GetStealthConfiguration,
    SetCoolstepConfiguration,
    GetCoolstepConfiguration,
    SetMiscConfiguration,
    GetMiscConfiguration,
    GetDriverStatus,
    SetMinimumVoltage,
    GetMinimumVoltage,
    SetTimeBase,
    GetTimeBase,
    GetAllData,
    SetAllDataPeriod,
    GetAllDataPeriod,
    SetSpitfpBaudrateConfig,
    GetSpitfpBaudrateConfig,
    GetSendTimeoutCount,
    SetSpitfpBaudrate,
    GetSpitfpBaudrate,
    GetSpitfpErrorCount,
    EnableStatusLed,
    DisableStatusLed,
    IsStatusLedEnabled,
    GetProtocol1BrickletName,
    GetChipTemperature,
    Reset,
    GetIdentity,
    CallbackUnderVoltage,
    CallbackPositionReached,
    CallbackAllData,
    CallbackNewState,
}
impl From<SilentStepperBrickFunction> for u8 {
    fn from(fun: SilentStepperBrickFunction) -> Self {
        match fun {
            SilentStepperBrickFunction::SetMaxVelocity => 1,
            SilentStepperBrickFunction::GetMaxVelocity => 2,
            SilentStepperBrickFunction::GetCurrentVelocity => 3,
            SilentStepperBrickFunction::SetSpeedRamping => 4,
            SilentStepperBrickFunction::GetSpeedRamping => 5,
            SilentStepperBrickFunction::FullBrake => 6,
            SilentStepperBrickFunction::SetCurrentPosition => 7,
            SilentStepperBrickFunction::GetCurrentPosition => 8,
            SilentStepperBrickFunction::SetTargetPosition => 9,
            SilentStepperBrickFunction::GetTargetPosition => 10,
            SilentStepperBrickFunction::SetSteps => 11,
            SilentStepperBrickFunction::GetSteps => 12,
            SilentStepperBrickFunction::GetRemainingSteps => 13,
            SilentStepperBrickFunction::SetStepConfiguration => 14,
            SilentStepperBrickFunction::GetStepConfiguration => 15,
            SilentStepperBrickFunction::DriveForward => 16,
            SilentStepperBrickFunction::DriveBackward => 17,
            SilentStepperBrickFunction::Stop => 18,
            SilentStepperBrickFunction::GetStackInputVoltage => 19,
            SilentStepperBrickFunction::GetExternalInputVoltage => 20,
            SilentStepperBrickFunction::SetMotorCurrent => 22,
            SilentStepperBrickFunction::GetMotorCurrent => 23,
            SilentStepperBrickFunction::Enable => 24,
            SilentStepperBrickFunction::Disable => 25,
            SilentStepperBrickFunction::IsEnabled => 26,
            SilentStepperBrickFunction::SetBasicConfiguration => 27,
            SilentStepperBrickFunction::GetBasicConfiguration => 28,
            SilentStepperBrickFunction::SetSpreadcycleConfiguration => 29,
            SilentStepperBrickFunction::GetSpreadcycleConfiguration => 30,
            SilentStepperBrickFunction::SetStealthConfiguration => 31,
            SilentStepperBrickFunction::GetStealthConfiguration => 32,
            SilentStepperBrickFunction::SetCoolstepConfiguration => 33,
            SilentStepperBrickFunction::GetCoolstepConfiguration => 34,
            SilentStepperBrickFunction::SetMiscConfiguration => 35,
            SilentStepperBrickFunction::GetMiscConfiguration => 36,
            SilentStepperBrickFunction::GetDriverStatus => 37,
            SilentStepperBrickFunction::SetMinimumVoltage => 38,
            SilentStepperBrickFunction::GetMinimumVoltage => 39,
            SilentStepperBrickFunction::SetTimeBase => 42,
            SilentStepperBrickFunction::GetTimeBase => 43,
            SilentStepperBrickFunction::GetAllData => 44,
            SilentStepperBrickFunction::SetAllDataPeriod => 45,
            SilentStepperBrickFunction::GetAllDataPeriod => 46,
            SilentStepperBrickFunction::SetSpitfpBaudrateConfig => 231,
            SilentStepperBrickFunction::GetSpitfpBaudrateConfig => 232,
            SilentStepperBrickFunction::GetSendTimeoutCount => 233,
            SilentStepperBrickFunction::SetSpitfpBaudrate => 234,
            SilentStepperBrickFunction::GetSpitfpBaudrate => 235,
            SilentStepperBrickFunction::GetSpitfpErrorCount => 237,
            SilentStepperBrickFunction::EnableStatusLed => 238,
            SilentStepperBrickFunction::DisableStatusLed => 239,
            SilentStepperBrickFunction::IsStatusLedEnabled => 240,
            SilentStepperBrickFunction::GetProtocol1BrickletName => 241,
            SilentStepperBrickFunction::GetChipTemperature => 242,
            SilentStepperBrickFunction::Reset => 243,
            SilentStepperBrickFunction::GetIdentity => 255,
            SilentStepperBrickFunction::CallbackUnderVoltage => 40,
            SilentStepperBrickFunction::CallbackPositionReached => 41,
            SilentStepperBrickFunction::CallbackAllData => 47,
            SilentStepperBrickFunction::CallbackNewState => 48,
        }
    }
}
pub const SILENT_STEPPER_BRICK_STEP_RESOLUTION_1: u8 = 8;
pub const SILENT_STEPPER_BRICK_STEP_RESOLUTION_2: u8 = 7;
pub const SILENT_STEPPER_BRICK_STEP_RESOLUTION_4: u8 = 6;
pub const SILENT_STEPPER_BRICK_STEP_RESOLUTION_8: u8 = 5;
pub const SILENT_STEPPER_BRICK_STEP_RESOLUTION_16: u8 = 4;
pub const SILENT_STEPPER_BRICK_STEP_RESOLUTION_32: u8 = 3;
pub const SILENT_STEPPER_BRICK_STEP_RESOLUTION_64: u8 = 2;
pub const SILENT_STEPPER_BRICK_STEP_RESOLUTION_128: u8 = 1;
pub const SILENT_STEPPER_BRICK_STEP_RESOLUTION_256: u8 = 0;
pub const SILENT_STEPPER_BRICK_CHOPPER_MODE_SPREAD_CYCLE: u8 = 0;
pub const SILENT_STEPPER_BRICK_CHOPPER_MODE_FAST_DECAY: u8 = 1;
pub const SILENT_STEPPER_BRICK_FREEWHEEL_MODE_NORMAL: u8 = 0;
pub const SILENT_STEPPER_BRICK_FREEWHEEL_MODE_FREEWHEELING: u8 = 1;
pub const SILENT_STEPPER_BRICK_FREEWHEEL_MODE_COIL_SHORT_LS: u8 = 2;
pub const SILENT_STEPPER_BRICK_FREEWHEEL_MODE_COIL_SHORT_HS: u8 = 3;
pub const SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_1: u8 = 0;
pub const SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_2: u8 = 1;
pub const SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_4: u8 = 2;
pub const SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_8: u8 = 3;
pub const SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_1: u8 = 0;
pub const SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_2: u8 = 1;
pub const SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_8: u8 = 2;
pub const SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_32: u8 = 3;
pub const SILENT_STEPPER_BRICK_MINIMUM_CURRENT_HALF: u8 = 0;
pub const SILENT_STEPPER_BRICK_MINIMUM_CURRENT_QUARTER: u8 = 1;
pub const SILENT_STEPPER_BRICK_STALLGUARD_MODE_STANDARD: u8 = 0;
pub const SILENT_STEPPER_BRICK_STALLGUARD_MODE_FILTERED: u8 = 1;
pub const SILENT_STEPPER_BRICK_OPEN_LOAD_NONE: u8 = 0;
pub const SILENT_STEPPER_BRICK_OPEN_LOAD_PHASE_A: u8 = 1;
pub const SILENT_STEPPER_BRICK_OPEN_LOAD_PHASE_B: u8 = 2;
pub const SILENT_STEPPER_BRICK_OPEN_LOAD_PHASE_AB: u8 = 3;
pub const SILENT_STEPPER_BRICK_SHORT_TO_GROUND_NONE: u8 = 0;
pub const SILENT_STEPPER_BRICK_SHORT_TO_GROUND_PHASE_A: u8 = 1;
pub const SILENT_STEPPER_BRICK_SHORT_TO_GROUND_PHASE_B: u8 = 2;
pub const SILENT_STEPPER_BRICK_SHORT_TO_GROUND_PHASE_AB: u8 = 3;
pub const SILENT_STEPPER_BRICK_OVER_TEMPERATURE_NONE: u8 = 0;
pub const SILENT_STEPPER_BRICK_OVER_TEMPERATURE_WARNING: u8 = 1;
pub const SILENT_STEPPER_BRICK_OVER_TEMPERATURE_LIMIT: u8 = 2;
pub const SILENT_STEPPER_BRICK_STATE_STOP: u8 = 1;
pub const SILENT_STEPPER_BRICK_STATE_ACCELERATION: u8 = 2;
pub const SILENT_STEPPER_BRICK_STATE_RUN: u8 = 3;
pub const SILENT_STEPPER_BRICK_STATE_DEACCELERATION: u8 = 4;
pub const SILENT_STEPPER_BRICK_STATE_DIRECTION_CHANGE_TO_FORWARD: u8 = 5;
pub const SILENT_STEPPER_BRICK_STATE_DIRECTION_CHANGE_TO_BACKWARD: u8 = 6;
pub const SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_NONE: u8 = 0;
pub const SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_USB: u8 = 1;
pub const SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_SPI_STACK: u8 = 2;
pub const SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_CHIBI: u8 = 3;
pub const SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_RS485: u8 = 4;
pub const SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_WIFI: u8 = 5;
pub const SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_ETHERNET: u8 = 6;
pub const SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_WIFI_V2: u8 = 7;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpeedRamping {
    pub acceleration: u16,
    pub deacceleration: u16,
}
impl FromByteSlice for SpeedRamping {
    fn bytes_expected() -> usize { 4 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpeedRamping {
        SpeedRamping { acceleration: <u16>::from_le_byte_slice(&bytes[0..2]), deacceleration: <u16>::from_le_byte_slice(&bytes[2..4]) }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct StepConfiguration {
    pub step_resolution: u8,
    pub interpolation: bool,
}
impl FromByteSlice for StepConfiguration {
    fn bytes_expected() -> usize { 2 }
    fn from_le_byte_slice(bytes: &[u8]) -> StepConfiguration {
        StepConfiguration {
            step_resolution: <u8>::from_le_byte_slice(&bytes[0..1]),
            interpolation: <bool>::from_le_byte_slice(&bytes[1..2]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct BasicConfiguration {
    pub standstill_current: u16,
    pub motor_run_current: u16,
    pub standstill_delay_time: u16,
    pub power_down_time: u16,
    pub stealth_threshold: u16,
    pub coolstep_threshold: u16,
    pub classic_threshold: u16,
    pub high_velocity_chopper_mode: bool,
}
impl FromByteSlice for BasicConfiguration {
    fn bytes_expected() -> usize { 15 }
    fn from_le_byte_slice(bytes: &[u8]) -> BasicConfiguration {
        BasicConfiguration {
            standstill_current: <u16>::from_le_byte_slice(&bytes[0..2]),
            motor_run_current: <u16>::from_le_byte_slice(&bytes[2..4]),
            standstill_delay_time: <u16>::from_le_byte_slice(&bytes[4..6]),
            power_down_time: <u16>::from_le_byte_slice(&bytes[6..8]),
            stealth_threshold: <u16>::from_le_byte_slice(&bytes[8..10]),
            coolstep_threshold: <u16>::from_le_byte_slice(&bytes[10..12]),
            classic_threshold: <u16>::from_le_byte_slice(&bytes[12..14]),
            high_velocity_chopper_mode: <bool>::from_le_byte_slice(&bytes[14..15]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpreadcycleConfiguration {
    pub slow_decay_duration: u8,
    pub enable_random_slow_decay: bool,
    pub fast_decay_duration: u8,
    pub hysteresis_start_value: u8,
    pub hysteresis_end_value: i8,
    pub sine_wave_offset: i8,
    pub chopper_mode: u8,
    pub comparator_blank_time: u8,
    pub fast_decay_without_comparator: bool,
}
impl FromByteSlice for SpreadcycleConfiguration {
    fn bytes_expected() -> usize { 9 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpreadcycleConfiguration {
        SpreadcycleConfiguration {
            slow_decay_duration: <u8>::from_le_byte_slice(&bytes[0..1]),
            enable_random_slow_decay: <bool>::from_le_byte_slice(&bytes[1..2]),
            fast_decay_duration: <u8>::from_le_byte_slice(&bytes[2..3]),
            hysteresis_start_value: <u8>::from_le_byte_slice(&bytes[3..4]),
            hysteresis_end_value: <i8>::from_le_byte_slice(&bytes[4..5]),
            sine_wave_offset: <i8>::from_le_byte_slice(&bytes[5..6]),
            chopper_mode: <u8>::from_le_byte_slice(&bytes[6..7]),
            comparator_blank_time: <u8>::from_le_byte_slice(&bytes[7..8]),
            fast_decay_without_comparator: <bool>::from_le_byte_slice(&bytes[8..9]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct StealthConfiguration {
    pub enable_stealth: bool,
    pub amplitude: u8,
    pub gradient: u8,
    pub enable_autoscale: bool,
    pub force_symmetric: bool,
    pub freewheel_mode: u8,
}
impl FromByteSlice for StealthConfiguration {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> StealthConfiguration {
        StealthConfiguration {
            enable_stealth: <bool>::from_le_byte_slice(&bytes[0..1]),
            amplitude: <u8>::from_le_byte_slice(&bytes[1..2]),
            gradient: <u8>::from_le_byte_slice(&bytes[2..3]),
            enable_autoscale: <bool>::from_le_byte_slice(&bytes[3..4]),
            force_symmetric: <bool>::from_le_byte_slice(&bytes[4..5]),
            freewheel_mode: <u8>::from_le_byte_slice(&bytes[5..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct CoolstepConfiguration {
    pub minimum_stallguard_value: u8,
    pub maximum_stallguard_value: u8,
    pub current_up_step_width: u8,
    pub current_down_step_width: u8,
    pub minimum_current: u8,
    pub stallguard_threshold_value: i8,
    pub stallguard_mode: u8,
}
impl FromByteSlice for CoolstepConfiguration {
    fn bytes_expected() -> usize { 7 }
    fn from_le_byte_slice(bytes: &[u8]) -> CoolstepConfiguration {
        CoolstepConfiguration {
            minimum_stallguard_value: <u8>::from_le_byte_slice(&bytes[0..1]),
            maximum_stallguard_value: <u8>::from_le_byte_slice(&bytes[1..2]),
            current_up_step_width: <u8>::from_le_byte_slice(&bytes[2..3]),
            current_down_step_width: <u8>::from_le_byte_slice(&bytes[3..4]),
            minimum_current: <u8>::from_le_byte_slice(&bytes[4..5]),
            stallguard_threshold_value: <i8>::from_le_byte_slice(&bytes[5..6]),
            stallguard_mode: <u8>::from_le_byte_slice(&bytes[6..7]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct MiscConfiguration {
    pub disable_short_to_ground_protection: bool,
    pub synchronize_phase_frequency: u8,
}
impl FromByteSlice for MiscConfiguration {
    fn bytes_expected() -> usize { 2 }
    fn from_le_byte_slice(bytes: &[u8]) -> MiscConfiguration {
        MiscConfiguration {
            disable_short_to_ground_protection: <bool>::from_le_byte_slice(&bytes[0..1]),
            synchronize_phase_frequency: <u8>::from_le_byte_slice(&bytes[1..2]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct DriverStatus {
    pub open_load: u8,
    pub short_to_ground: u8,
    pub over_temperature: u8,
    pub motor_stalled: bool,
    pub actual_motor_current: u8,
    pub full_step_active: bool,
    pub stallguard_result: u8,
    pub stealth_voltage_amplitude: u8,
}
impl FromByteSlice for DriverStatus {
    fn bytes_expected() -> usize { 8 }
    fn from_le_byte_slice(bytes: &[u8]) -> DriverStatus {
        DriverStatus {
            open_load: <u8>::from_le_byte_slice(&bytes[0..1]),
            short_to_ground: <u8>::from_le_byte_slice(&bytes[1..2]),
            over_temperature: <u8>::from_le_byte_slice(&bytes[2..3]),
            motor_stalled: <bool>::from_le_byte_slice(&bytes[3..4]),
            actual_motor_current: <u8>::from_le_byte_slice(&bytes[4..5]),
            full_step_active: <bool>::from_le_byte_slice(&bytes[5..6]),
            stallguard_result: <u8>::from_le_byte_slice(&bytes[6..7]),
            stealth_voltage_amplitude: <u8>::from_le_byte_slice(&bytes[7..8]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct AllData {
    pub current_velocity: u16,
    pub current_position: i32,
    pub remaining_steps: i32,
    pub stack_voltage: u16,
    pub external_voltage: u16,
    pub current_consumption: u16,
}
impl FromByteSlice for AllData {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> AllData {
        AllData {
            current_velocity: <u16>::from_le_byte_slice(&bytes[0..2]),
            current_position: <i32>::from_le_byte_slice(&bytes[2..6]),
            remaining_steps: <i32>::from_le_byte_slice(&bytes[6..10]),
            stack_voltage: <u16>::from_le_byte_slice(&bytes[10..12]),
            external_voltage: <u16>::from_le_byte_slice(&bytes[12..14]),
            current_consumption: <u16>::from_le_byte_slice(&bytes[14..16]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct AllDataEvent {
    pub current_velocity: u16,
    pub current_position: i32,
    pub remaining_steps: i32,
    pub stack_voltage: u16,
    pub external_voltage: u16,
    pub current_consumption: u16,
}
impl FromByteSlice for AllDataEvent {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> AllDataEvent {
        AllDataEvent {
            current_velocity: <u16>::from_le_byte_slice(&bytes[0..2]),
            current_position: <i32>::from_le_byte_slice(&bytes[2..6]),
            remaining_steps: <i32>::from_le_byte_slice(&bytes[6..10]),
            stack_voltage: <u16>::from_le_byte_slice(&bytes[10..12]),
            external_voltage: <u16>::from_le_byte_slice(&bytes[12..14]),
            current_consumption: <u16>::from_le_byte_slice(&bytes[14..16]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct NewStateEvent {
    pub state_new: u8,
    pub state_previous: u8,
}
impl FromByteSlice for NewStateEvent {
    fn bytes_expected() -> usize { 2 }
    fn from_le_byte_slice(bytes: &[u8]) -> NewStateEvent {
        NewStateEvent { state_new: <u8>::from_le_byte_slice(&bytes[0..1]), state_previous: <u8>::from_le_byte_slice(&bytes[1..2]) }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpBaudrateConfig {
    pub enable_dynamic_baudrate: bool,
    pub minimum_dynamic_baudrate: u32,
}
impl FromByteSlice for SpitfpBaudrateConfig {
    fn bytes_expected() -> usize { 5 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpBaudrateConfig {
        SpitfpBaudrateConfig {
            enable_dynamic_baudrate: <bool>::from_le_byte_slice(&bytes[0..1]),
            minimum_dynamic_baudrate: <u32>::from_le_byte_slice(&bytes[1..5]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone)]
pub struct Protocol1BrickletName {
    pub protocol_version: u8,
    pub firmware_version: [u8; 3],
    pub name: String,
}
impl FromByteSlice for Protocol1BrickletName {
    fn bytes_expected() -> usize { 44 }
    fn from_le_byte_slice(bytes: &[u8]) -> Protocol1BrickletName {
        Protocol1BrickletName {
            protocol_version: <u8>::from_le_byte_slice(&bytes[0..1]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[1..4]),
            name: <String>::from_le_byte_slice(&bytes[4..44]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

/// Silently drives one bipolar stepper motor with up to 46V and 1.6A per phase
#[derive(Clone)]
pub struct SilentStepperBrick {
    device: Device,
}
impl SilentStepperBrick {
    pub const DEVICE_IDENTIFIER: u16 = 19;
    pub const DEVICE_DISPLAY_NAME: &'static str = "Silent Stepper Brick";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> SilentStepperBrick {
        let mut result = SilentStepperBrick { device: Device::new([2, 0, 1], uid, req_sender, 0) };
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetMaxVelocity) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetMaxVelocity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetCurrentVelocity) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetSpeedRamping) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetSpeedRamping) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::FullBrake) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetCurrentPosition) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetCurrentPosition) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetTargetPosition) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetTargetPosition) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetSteps) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetSteps) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetRemainingSteps) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetStepConfiguration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetStepConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::DriveForward) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::DriveBackward) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::Stop) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetStackInputVoltage) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetExternalInputVoltage) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetMotorCurrent) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetMotorCurrent) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::Enable) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::Disable) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::IsEnabled) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetBasicConfiguration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetBasicConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetSpreadcycleConfiguration) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetSpreadcycleConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetStealthConfiguration) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetStealthConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetCoolstepConfiguration) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetCoolstepConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetMiscConfiguration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetMiscConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetDriverStatus) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetMinimumVoltage) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetMinimumVoltage) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetTimeBase) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetTimeBase) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetAllData) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetAllDataPeriod) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetAllDataPeriod) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetSpitfpBaudrateConfig) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetSpitfpBaudrateConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetSendTimeoutCount) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::SetSpitfpBaudrate) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetSpitfpBaudrate) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetSpitfpErrorCount) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::EnableStatusLed) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::DisableStatusLed) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::IsStatusLedEnabled) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetProtocol1BrickletName) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetChipTemperature) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(SilentStepperBrickFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::silent_stepper_brick::SilentStepperBrick::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::silent_stepper_brick::SilentStepperBrick::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: SilentStepperBrickFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(
        &mut self,
        fun: SilentStepperBrickFunction,
        response_expected: bool,
    ) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is triggered when the input voltage drops below the value set by
    /// [`set_minimum_voltage`]. The parameter is the current voltage given
    /// in mV.
    ///
    /// [`set_minimum_voltage`]: #method.set_minimum_voltage
    pub fn get_under_voltage_callback_receiver(&self) -> ConvertingCallbackReceiver<u16> {
        self.device.get_callback_receiver(u8::from(SilentStepperBrickFunction::CallbackUnderVoltage))
    }

    /// This receiver is triggered when a position set by [`set_steps`] or
    /// [`set_target_position`] is reached.
    ///
    /// # Note
    ///  Since we can't get any feedback from the stepper motor, this only works if the
    ///  acceleration (see [`set_speed_ramping`]) is set smaller or equal to the
    ///  maximum acceleration of the motor. Otherwise the motor will lag behind the
    ///  control value and the receiver will be triggered too early.
    ///
    /// [`set_speed_ramping`]: #method.set_speed_ramping
    /// [`set_target_position`]: #method.set_target_position
    /// [`set_steps`]: #method.set_steps
    pub fn get_position_reached_callback_receiver(&self) -> ConvertingCallbackReceiver<i32> {
        self.device.get_callback_receiver(u8::from(SilentStepperBrickFunction::CallbackPositionReached))
    }

    /// This receiver is triggered periodically with the period that is set by
    /// [`set_all_data_period`]. The parameters are: the current velocity,
    /// the current position, the remaining steps, the stack voltage, the external
    /// voltage and the current consumption of the stepper motor.
    ///
    /// [`set_all_data_period`]: #method.set_all_data_period
    pub fn get_all_data_callback_receiver(&self) -> ConvertingCallbackReceiver<AllDataEvent> {
        self.device.get_callback_receiver(u8::from(SilentStepperBrickFunction::CallbackAllData))
    }

    /// This receiver is triggered whenever the Silent Stepper Brick enters a new state.
    /// It returns the new state as well as the previous state.
    pub fn get_new_state_callback_receiver(&self) -> ConvertingCallbackReceiver<NewStateEvent> {
        self.device.get_callback_receiver(u8::from(SilentStepperBrickFunction::CallbackNewState))
    }

    /// Sets the maximum velocity of the stepper motor in steps per second.
    /// This function does *not* start the motor, it merely sets the maximum
    /// velocity the stepper motor is accelerated to. To get the motor running use
    /// either [`set_target_position`], [`set_steps`], [`drive_forward`] or
    /// [`drive_backward`].
    ///
    /// [`set_target_position`]: #method.set_target_position
    /// [`set_steps`]: #method.set_steps
    /// [`drive_forward`]: #method.drive_forward
    /// [`drive_backward`]: #method.drive_backward
    pub fn set_max_velocity(&self, velocity: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(velocity));

        self.device.set(u8::from(SilentStepperBrickFunction::SetMaxVelocity), payload)
    }

    /// Returns the velocity as set by [`set_max_velocity`].
    ///
    /// [`set_max_velocity`]: #method.set_max_velocity
    pub fn get_max_velocity(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetMaxVelocity), payload)
    }

    /// Returns the *current* velocity of the stepper motor in steps per second.
    pub fn get_current_velocity(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetCurrentVelocity), payload)
    }

    /// Sets the acceleration and deacceleration of the stepper motor. The values
    /// are given in *steps/s²*. An acceleration of 1000 means, that
    /// every second the velocity is increased by 1000 *steps/s*.
    ///
    /// For example: If the current velocity is 0 and you want to accelerate to a
    /// velocity of 8000 *steps/s* in 10 seconds, you should set an acceleration
    /// of 800 *steps/s²*.
    ///
    /// An acceleration/deacceleration of 0 means instantaneous
    /// acceleration/deacceleration (not recommended)
    ///
    /// The default value is 1000 for both
    pub fn set_speed_ramping(&self, acceleration: u16, deacceleration: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(acceleration));
        payload[2..4].copy_from_slice(&<u16>::to_le_byte_vec(deacceleration));

        self.device.set(u8::from(SilentStepperBrickFunction::SetSpeedRamping), payload)
    }

    /// Returns the acceleration and deacceleration as set by
    /// [`set_speed_ramping`].
    ///
    /// [`set_speed_ramping`]: #method.set_speed_ramping
    pub fn get_speed_ramping(&self) -> ConvertingReceiver<SpeedRamping> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetSpeedRamping), payload)
    }

    /// Executes an active full brake.
    ///
    /// # Warning
    ///  This function is for emergency purposes,
    ///  where an immediate brake is necessary. Depending on the current velocity and
    ///  the strength of the motor, a full brake can be quite violent.
    ///
    /// Call [`stop`] if you just want to stop the motor.
    ///
    /// [`stop`]: #method.stop
    pub fn full_brake(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(SilentStepperBrickFunction::FullBrake), payload)
    }

    /// Sets the current steps of the internal step counter. This can be used to
    /// set the current position to 0 when some kind of starting position
    /// is reached (e.g. when a CNC machine reaches a corner).
    pub fn set_current_position(&self, position: i32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<i32>::to_le_byte_vec(position));

        self.device.set(u8::from(SilentStepperBrickFunction::SetCurrentPosition), payload)
    }

    /// Returns the current position of the stepper motor in steps. On startup
    /// the position is 0. The steps are counted with all possible driving
    /// functions ([`set_target_position`], [`set_steps`], [`drive_forward`] or
    /// [`drive_backward`]). It also is possible to reset the steps to 0 or
    /// set them to any other desired value with [`set_current_position`].
    ///
    /// [`set_current_position`]: #method.set_current_position
    /// [`set_target_position`]: #method.set_target_position
    /// [`set_steps`]: #method.set_steps
    /// [`drive_forward`]: #method.drive_forward
    /// [`drive_backward`]: #method.drive_backward
    pub fn get_current_position(&self) -> ConvertingReceiver<i32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetCurrentPosition), payload)
    }

    /// Sets the target position of the stepper motor in steps. For example,
    /// if the current position of the motor is 500 and [`set_target_position`] is
    /// called with 1000, the stepper motor will drive 500 steps forward. It will
    /// use the velocity, acceleration and deacceleration as set by
    /// [`set_max_velocity`] and [`set_speed_ramping`].
    ///
    /// A call of [`set_target_position`] with the parameter *x* is equivalent to
    /// a call of [`set_steps`] with the parameter
    /// (*x* - [`get_current_position`]).
    ///
    /// [`set_max_velocity`]: #method.set_max_velocity
    /// [`set_speed_ramping`]: #method.set_speed_ramping
    /// [`get_current_position`]: #method.get_current_position
    /// [`set_target_position`]: #method.set_target_position
    /// [`set_steps`]: #method.set_steps
    pub fn set_target_position(&self, position: i32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<i32>::to_le_byte_vec(position));

        self.device.set(u8::from(SilentStepperBrickFunction::SetTargetPosition), payload)
    }

    /// Returns the last target position as set by [`set_target_position`].
    ///
    /// [`set_target_position`]: #method.set_target_position
    pub fn get_target_position(&self) -> ConvertingReceiver<i32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetTargetPosition), payload)
    }

    /// Sets the number of steps the stepper motor should run. Positive values
    /// will drive the motor forward and negative values backward.
    /// The velocity, acceleration and deacceleration as set by
    /// [`set_max_velocity`] and [`set_speed_ramping`] will be used.
    ///
    /// [`set_max_velocity`]: #method.set_max_velocity
    /// [`set_speed_ramping`]: #method.set_speed_ramping
    pub fn set_steps(&self, steps: i32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<i32>::to_le_byte_vec(steps));

        self.device.set(u8::from(SilentStepperBrickFunction::SetSteps), payload)
    }

    /// Returns the last steps as set by [`set_steps`].
    ///
    /// [`set_steps`]: #method.set_steps
    pub fn get_steps(&self) -> ConvertingReceiver<i32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetSteps), payload)
    }

    /// Returns the remaining steps of the last call of [`set_steps`].
    /// For example, if [`set_steps`] is called with 2000 and
    /// [`get_remaining_steps`] is called after the motor has run for 500 steps,
    /// it will return 1500.
    ///
    /// [`set_steps`]: #method.set_steps
    /// [`get_remaining_steps`]: #method.get_remaining_steps
    pub fn get_remaining_steps(&self) -> ConvertingReceiver<i32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetRemainingSteps), payload)
    }

    /// Sets the step resolution from full-step up to 1/256-step.
    ///
    /// If interpolation is turned on, the Silent Stepper Brick will always interpolate
    /// your step inputs as 1/256-step. If you use full-step mode with interpolation, each
    /// step will generate 256 1/256 steps.
    ///
    /// For maximum torque use full-step without interpolation. For maximum resolution use
    /// 1/256-step. Turn interpolation on to make the Stepper driving less noisy.
    ///
    /// If you often change the speed with high acceleration you should turn the
    /// interpolation off.
    ///
    /// The default is 1/256-step with interpolation on.
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_STEP_RESOLUTION_1
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_2
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_4
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_8
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_16
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_32
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_64
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_128
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_256
    pub fn set_step_configuration(&self, step_resolution: u8, interpolation: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(step_resolution));
        payload[1..2].copy_from_slice(&<bool>::to_le_byte_vec(interpolation));

        self.device.set(u8::from(SilentStepperBrickFunction::SetStepConfiguration), payload)
    }

    /// Returns the step mode as set by [`set_step_configuration`].
    ///
    /// [`set_step_configuration`]: #method.set_step_configuration
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_STEP_RESOLUTION_1
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_2
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_4
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_8
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_16
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_32
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_64
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_128
    ///	* SILENT_STEPPER_BRICK_STEP_RESOLUTION_256
    pub fn get_step_configuration(&self) -> ConvertingReceiver<StepConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetStepConfiguration), payload)
    }

    /// Drives the stepper motor forward until [`drive_backward`] or
    /// [`stop`] is called. The velocity, acceleration and deacceleration as
    /// set by [`set_max_velocity`] and [`set_speed_ramping`] will be used.
    ///
    /// [`set_max_velocity`]: #method.set_max_velocity
    /// [`set_speed_ramping`]: #method.set_speed_ramping
    /// [`drive_backward`]: #method.drive_backward
    /// [`stop`]: #method.stop
    pub fn drive_forward(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(SilentStepperBrickFunction::DriveForward), payload)
    }

    /// Drives the stepper motor backward until [`drive_forward`] or
    /// [`stop`] is triggered. The velocity, acceleration and deacceleration as
    /// set by [`set_max_velocity`] and [`set_speed_ramping`] will be used.
    ///
    /// [`set_max_velocity`]: #method.set_max_velocity
    /// [`set_speed_ramping`]: #method.set_speed_ramping
    /// [`drive_forward`]: #method.drive_forward
    /// [`stop`]: #method.stop
    pub fn drive_backward(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(SilentStepperBrickFunction::DriveBackward), payload)
    }

    /// Stops the stepper motor with the deacceleration as set by
    /// [`set_speed_ramping`].
    ///
    /// [`set_speed_ramping`]: #method.set_speed_ramping
    pub fn stop(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(SilentStepperBrickFunction::Stop), payload)
    }

    /// Returns the stack input voltage in mV. The stack input voltage is the
    /// voltage that is supplied via the stack, i.e. it is given by a
    /// Step-Down or Step-Up Power Supply.
    pub fn get_stack_input_voltage(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetStackInputVoltage), payload)
    }

    /// Returns the external input voltage in mV. The external input voltage is
    /// given via the black power input connector on the Silent Stepper Brick.
    ///
    /// If there is an external input voltage and a stack input voltage, the motor
    /// will be driven by the external input voltage. If there is only a stack
    /// voltage present, the motor will be driven by this voltage.
    ///
    /// # Warning
    ///  This means, if you have a high stack voltage and a low external voltage,
    ///  the motor will be driven with the low external voltage. If you then remove
    ///  the external connection, it will immediately be driven by the high
    ///  stack voltage
    pub fn get_external_input_voltage(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetExternalInputVoltage), payload)
    }

    /// Sets the current in mA with which the motor will be driven.
    /// The minimum value is 360mA, the maximum value 1640mA and the
    /// default value is 800mA.
    ///
    /// # Warning
    ///  Do not set this value above the specifications of your stepper motor.
    ///  Otherwise it may damage your motor.
    pub fn set_motor_current(&self, current: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(current));

        self.device.set(u8::from(SilentStepperBrickFunction::SetMotorCurrent), payload)
    }

    /// Returns the current as set by [`set_motor_current`].
    ///
    /// [`set_motor_current`]: #method.set_motor_current
    pub fn get_motor_current(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetMotorCurrent), payload)
    }

    /// Enables the driver chip. The driver parameters can be configured (maximum velocity,
    /// acceleration, etc) before it is enabled.
    pub fn enable(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(SilentStepperBrickFunction::Enable), payload)
    }

    /// Disables the driver chip. The configurations are kept (maximum velocity,
    /// acceleration, etc) but the motor is not driven until it is enabled again.
    pub fn disable(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(SilentStepperBrickFunction::Disable), payload)
    }

    /// Returns *true* if the driver chip is enabled, *false* otherwise.
    pub fn is_enabled(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::IsEnabled), payload)
    }

    /// Sets the basic configuration parameters for the different modes (Stealth, Coolstep, Classic).
    ///
    /// * Standstill Current: This value can be used to lower the current during stand still. This might
    ///   be reasonable to reduce the heating of the motor and the Brick. When the motor is in standstill
    ///   the configured motor phase current will be driven until the configured
    ///   Power Down Time is elapsed. After that the phase current will be reduced to the standstill
    ///   current. The elapsed time for this reduction can be configured with the Standstill Delay Time.
    ///   The unit is in mA and the maximum allowed value is the configured maximum motor current
    ///   (see [`set_motor_current`]).
    ///
    /// * Motor Run Current: The value sets the motor current when the motor is running.
    ///   Use a value of at least one half of the global maximum motor current for a good
    ///   microstep performance. The unit is in mA and the maximum allowed value is the current
    ///   motor current. The API maps the entered value to 1/32 ... 32/32 of the maximum
    ///   motor current. This value should be used to change the motor current during motor movement,
    ///   whereas the global maximum motor current should not be changed while the motor is moving
    ///   (see [`set_motor_current`]).
    ///
    /// * Standstill Delay Time: Controls the duration for motor power down after a motion
    ///   as soon as standstill is detected and the Power Down Time is expired. A high Standstill Delay
    ///   Time results in a smooth transition that avoids motor jerk during power down.
    ///   The value range is 0 to 307ms
    ///
    /// * Power Down Time: Sets the delay time after a stand still.
    ///   The value range is 0 to 5222ms.
    ///
    /// * Stealth Threshold: Sets the upper threshold for Stealth mode in steps/s. The value range is
    ///   0-65536 steps/s. If the velocity of the motor goes above this value, Stealth mode is turned
    ///   off. Otherwise it is turned on. In Stealth mode the torque declines with high speed.
    ///
    /// * Coolstep Threshold: Sets the lower threshold for Coolstep mode in steps/s. The value range is
    ///   0-65536 steps/s. The Coolstep Threshold needs to be above the Stealth Threshold.
    ///
    /// * Classic Threshold: Sets the lower threshold for classic mode. The value range is
    ///   0-65536 steps/s. In classic mode the stepper becomes more noisy, but the torque is maximized.
    ///
    /// * High Velocity Shopper Mode: If High Velocity Shopper Mode is enabled, the stepper control
    ///   is optimized to run the stepper motors at high velocities.
    ///
    /// If you want to use all three thresholds make sure that
    /// Stealth Threshold < Coolstep Threshold < Classic Threshold.
    ///
    /// The default values are:
    ///
    /// * Standstill Current: 200
    /// * Motor Run Current: 800
    /// * Standstill Delay Time: 0
    /// * Power Down Time: 1000
    /// * Stealth Threshold: 500
    /// * Coolstep Threshold: 500
    /// * Classic Threshold: 1000
    /// * High Velocity Shopper Mode: false
    ///
    ///
    /// [`set_motor_current`]: #method.set_motor_current
    pub fn set_basic_configuration(
        &self,
        standstill_current: u16,
        motor_run_current: u16,
        standstill_delay_time: u16,
        power_down_time: u16,
        stealth_threshold: u16,
        coolstep_threshold: u16,
        classic_threshold: u16,
        high_velocity_chopper_mode: bool,
    ) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 15];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(standstill_current));
        payload[2..4].copy_from_slice(&<u16>::to_le_byte_vec(motor_run_current));
        payload[4..6].copy_from_slice(&<u16>::to_le_byte_vec(standstill_delay_time));
        payload[6..8].copy_from_slice(&<u16>::to_le_byte_vec(power_down_time));
        payload[8..10].copy_from_slice(&<u16>::to_le_byte_vec(stealth_threshold));
        payload[10..12].copy_from_slice(&<u16>::to_le_byte_vec(coolstep_threshold));
        payload[12..14].copy_from_slice(&<u16>::to_le_byte_vec(classic_threshold));
        payload[14..15].copy_from_slice(&<bool>::to_le_byte_vec(high_velocity_chopper_mode));

        self.device.set(u8::from(SilentStepperBrickFunction::SetBasicConfiguration), payload)
    }

    /// Returns the configuration as set by [`set_basic_configuration`].
    ///
    /// [`set_basic_configuration`]: #method.set_basic_configuration
    pub fn get_basic_configuration(&self) -> ConvertingReceiver<BasicConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetBasicConfiguration), payload)
    }

    /// Note: If you don't know what any of this means you can very likely keep all of
    /// the values as default!
    ///
    /// Sets the Spreadcycle configuration parameters. Spreadcycle is a chopper algorithm which actively
    /// controls the motor current flow. More information can be found in the TMC2130 datasheet on page
    /// 47 (7 spreadCycle and Classic Chopper).
    ///
    /// * Slow Decay Duration: Controls duration of off time setting of slow decay phase. The value
    ///   range is 0-15. 0 = driver disabled, all bridges off. Use 1 only with Comparator Blank time >= 2.
    ///
    /// * Enable Random Slow Decay: Set to false to fix chopper off time as set by Slow Decay Duration.
    ///   If you set it to true, Decay Duration is randomly modulated.
    ///
    /// * Fast Decay Duration: Sets the fast decay duration. The value range is 0-15. This parameters is
    ///   only used if the Chopper Mode is set to Fast Decay.
    ///
    /// * Hysteresis Start Value: Sets the hysteresis start value. The value range is 0-7. This parameter is
    ///   only used if the Chopper Mode is set to Spread Cycle.
    ///
    /// * Hysteresis End Value: Sets the hysteresis end value. The value range is -3 to 12. This parameter is
    ///   only used if the Chopper Mode is set to Spread Cycle.
    ///
    /// * Sine Wave Offset: Sets the sine wave offset. The value range is -3 to 12. This parameters is
    ///   only used if the Chopper Mode is set to Fast Decay. 1/512 of the value becomes added to the absolute
    ///   value of the sine wave.
    ///
    /// * Chopper Mode: 0 = Spread Cycle, 1 = Fast Decay.
    ///
    /// * Comparator Blank Time: Sets the blank time of the comparator. Available values are
    ///
    ///   * 0 = 16 clocks,
    ///   * 1 = 24 clocks,
    ///   * 2 = 36 clocks and
    ///   * 3 = 54 clocks.
    ///
    ///   A value of 1 or 2 is recommended for most applications.
    ///
    /// * Fast Decay Without Comparator: If set to true the current comparator usage for termination of the
    ///   fast decay cycle is disabled.
    ///
    /// The default values are:
    ///
    /// * Slow Decay Duration: 4
    /// * Enable Random Slow Decay: 0
    /// * Fast Decay Duration: 0
    /// * Hysteresis Start Value: 0
    /// * Hysteresis End Value: 0
    /// * Sine Wave Offset: 0
    /// * Chopper Mode: 0
    /// * Comparator Blank Time: 1
    /// * Fast Decay Without Comparator: false
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_CHOPPER_MODE_SPREAD_CYCLE
    ///	* SILENT_STEPPER_BRICK_CHOPPER_MODE_FAST_DECAY
    pub fn set_spreadcycle_configuration(
        &self,
        slow_decay_duration: u8,
        enable_random_slow_decay: bool,
        fast_decay_duration: u8,
        hysteresis_start_value: u8,
        hysteresis_end_value: i8,
        sine_wave_offset: i8,
        chopper_mode: u8,
        comparator_blank_time: u8,
        fast_decay_without_comparator: bool,
    ) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 9];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(slow_decay_duration));
        payload[1..2].copy_from_slice(&<bool>::to_le_byte_vec(enable_random_slow_decay));
        payload[2..3].copy_from_slice(&<u8>::to_le_byte_vec(fast_decay_duration));
        payload[3..4].copy_from_slice(&<u8>::to_le_byte_vec(hysteresis_start_value));
        payload[4..5].copy_from_slice(&<i8>::to_le_byte_vec(hysteresis_end_value));
        payload[5..6].copy_from_slice(&<i8>::to_le_byte_vec(sine_wave_offset));
        payload[6..7].copy_from_slice(&<u8>::to_le_byte_vec(chopper_mode));
        payload[7..8].copy_from_slice(&<u8>::to_le_byte_vec(comparator_blank_time));
        payload[8..9].copy_from_slice(&<bool>::to_le_byte_vec(fast_decay_without_comparator));

        self.device.set(u8::from(SilentStepperBrickFunction::SetSpreadcycleConfiguration), payload)
    }

    /// Returns the configuration as set by [`set_basic_configuration`].
    ///
    /// [`set_basic_configuration`]: #method.set_basic_configuration
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_CHOPPER_MODE_SPREAD_CYCLE
    ///	* SILENT_STEPPER_BRICK_CHOPPER_MODE_FAST_DECAY
    pub fn get_spreadcycle_configuration(&self) -> ConvertingReceiver<SpreadcycleConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetSpreadcycleConfiguration), payload)
    }

    /// Note: If you don't know what any of this means you can very likely keep all of
    /// the values as default!
    ///
    /// Sets the configuration relevant for Stealth mode.
    ///
    /// * Enable Stealth: If set to true the stealth mode is enabled, if set to false the
    ///   stealth mode is disabled, even if the speed is below the threshold set in [`set_basic_configuration`].
    ///
    /// * Amplitude: If autoscale is disabled, the PWM amplitude is scaled by this value. If autoscale is enabled,
    ///   this value defines the maximum PWM amplitude change per half wave. The value range is 0-255.
    ///
    /// * Gradient: If autoscale is disabled, the PWM gradient is scaled by this value. If autoscale is enabled,
    ///   this value defines the maximum PWM gradient. With autoscale a value above 64 is recommended,
    ///   otherwise the regulation might not be able to measure the current. The value range is 0-255.
    ///
    /// * Enable Autoscale: If set to true, automatic current control is used. Otherwise the user defined
    ///   amplitude and gradient are used.
    ///
    /// * Force Symmetric: If true, A symmetric PWM cycle is enforced. Otherwise the PWM value may change within each
    ///   PWM cycle.
    ///
    /// * Freewheel Mode: The freewheel mode defines the behavior in stand still if the Standstill Current
    ///   (see [`set_basic_configuration`]) is set to 0.
    ///
    /// The default values are:
    ///
    /// * Enable Stealth: true
    /// * Amplitude: 128
    /// * Gradient: 4
    /// * Enable Autoscale: true
    /// * Force Symmetric: false
    /// * Freewheel Mode: 0 (Normal)
    ///
    ///
    /// [`set_basic_configuration`]: #method.set_basic_configuration
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_FREEWHEEL_MODE_NORMAL
    ///	* SILENT_STEPPER_BRICK_FREEWHEEL_MODE_FREEWHEELING
    ///	* SILENT_STEPPER_BRICK_FREEWHEEL_MODE_COIL_SHORT_LS
    ///	* SILENT_STEPPER_BRICK_FREEWHEEL_MODE_COIL_SHORT_HS
    pub fn set_stealth_configuration(
        &self,
        enable_stealth: bool,
        amplitude: u8,
        gradient: u8,
        enable_autoscale: bool,
        force_symmetric: bool,
        freewheel_mode: u8,
    ) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 6];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(enable_stealth));
        payload[1..2].copy_from_slice(&<u8>::to_le_byte_vec(amplitude));
        payload[2..3].copy_from_slice(&<u8>::to_le_byte_vec(gradient));
        payload[3..4].copy_from_slice(&<bool>::to_le_byte_vec(enable_autoscale));
        payload[4..5].copy_from_slice(&<bool>::to_le_byte_vec(force_symmetric));
        payload[5..6].copy_from_slice(&<u8>::to_le_byte_vec(freewheel_mode));

        self.device.set(u8::from(SilentStepperBrickFunction::SetStealthConfiguration), payload)
    }

    /// Returns the configuration as set by [`set_stealth_configuration`].
    ///
    /// [`set_stealth_configuration`]: #method.set_stealth_configuration
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_FREEWHEEL_MODE_NORMAL
    ///	* SILENT_STEPPER_BRICK_FREEWHEEL_MODE_FREEWHEELING
    ///	* SILENT_STEPPER_BRICK_FREEWHEEL_MODE_COIL_SHORT_LS
    ///	* SILENT_STEPPER_BRICK_FREEWHEEL_MODE_COIL_SHORT_HS
    pub fn get_stealth_configuration(&self) -> ConvertingReceiver<StealthConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetStealthConfiguration), payload)
    }

    /// Note: If you don't know what any of this means you can very likely keep all of
    /// the values as default!
    ///
    /// Sets the configuration relevant for Coolstep.
    ///
    /// * Minimum Stallguard Value: If the Stallguard result falls below this value*32, the motor current
    ///   is increased to reduce motor load angle. The value range is 0-15. A value of 0 turns Coolstep off.
    ///
    /// * Maximum Stallguard Value: If the Stallguard result goes above
    ///   (Min Stallguard Value + Max Stallguard Value + 1) * 32, the motor current is decreased to save
    ///   energy.
    ///
    /// * Current Up Step Width: Sets the up step increment per Stallguard value. The value range is 0-3,
    ///   corresponding to the increments 1, 2, 4 and 8.
    ///
    /// * Current Down Step Width: Sets the down step decrement per Stallguard value. The value range is 0-3,
    ///   corresponding to the decrements 1, 2, 8 and 16.
    ///
    /// * Minimum Current: Sets the minimum current for Coolstep current control. You can choose between
    ///   half and quarter of the run current.
    ///
    /// * Stallguard Threshold Value: Sets the level for stall output (see [`get_driver_status`]). The value
    ///   range is -64 to +63. A lower value gives a higher sensitivity. You have to find a suitable value for your
    ///   motor by trial and error, 0 works for most motors.
    ///
    /// * Stallguard Mode: Set to 0 for standard resolution or 1 for filtered mode. In filtered mode the Stallguard
    ///   signal will be updated every four full-steps.
    ///
    /// The default values are:
    ///
    /// * Minimum Stallguard Value: 2
    /// * Maximum Stallguard Value: 10
    /// * Current Up Step Width: 0
    /// * Current Down Step Width: 0
    /// * Minimum Current: 0
    /// * Stallguard Threshold Value: 0
    /// * Stallguard Mode: 0
    ///
    ///
    /// [`get_driver_status`]: #method.get_driver_status
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_1
    ///	* SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_2
    ///	* SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_4
    ///	* SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_8
    ///	* SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_1
    ///	* SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_2
    ///	* SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_8
    ///	* SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_32
    ///	* SILENT_STEPPER_BRICK_MINIMUM_CURRENT_HALF
    ///	* SILENT_STEPPER_BRICK_MINIMUM_CURRENT_QUARTER
    ///	* SILENT_STEPPER_BRICK_STALLGUARD_MODE_STANDARD
    ///	* SILENT_STEPPER_BRICK_STALLGUARD_MODE_FILTERED
    pub fn set_coolstep_configuration(
        &self,
        minimum_stallguard_value: u8,
        maximum_stallguard_value: u8,
        current_up_step_width: u8,
        current_down_step_width: u8,
        minimum_current: u8,
        stallguard_threshold_value: i8,
        stallguard_mode: u8,
    ) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 7];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(minimum_stallguard_value));
        payload[1..2].copy_from_slice(&<u8>::to_le_byte_vec(maximum_stallguard_value));
        payload[2..3].copy_from_slice(&<u8>::to_le_byte_vec(current_up_step_width));
        payload[3..4].copy_from_slice(&<u8>::to_le_byte_vec(current_down_step_width));
        payload[4..5].copy_from_slice(&<u8>::to_le_byte_vec(minimum_current));
        payload[5..6].copy_from_slice(&<i8>::to_le_byte_vec(stallguard_threshold_value));
        payload[6..7].copy_from_slice(&<u8>::to_le_byte_vec(stallguard_mode));

        self.device.set(u8::from(SilentStepperBrickFunction::SetCoolstepConfiguration), payload)
    }

    /// Returns the configuration as set by [`set_coolstep_configuration`].
    ///
    /// [`set_coolstep_configuration`]: #method.set_coolstep_configuration
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_1
    ///	* SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_2
    ///	* SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_4
    ///	* SILENT_STEPPER_BRICK_CURRENT_UP_STEP_INCREMENT_8
    ///	* SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_1
    ///	* SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_2
    ///	* SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_8
    ///	* SILENT_STEPPER_BRICK_CURRENT_DOWN_STEP_DECREMENT_32
    ///	* SILENT_STEPPER_BRICK_MINIMUM_CURRENT_HALF
    ///	* SILENT_STEPPER_BRICK_MINIMUM_CURRENT_QUARTER
    ///	* SILENT_STEPPER_BRICK_STALLGUARD_MODE_STANDARD
    ///	* SILENT_STEPPER_BRICK_STALLGUARD_MODE_FILTERED
    pub fn get_coolstep_configuration(&self) -> ConvertingReceiver<CoolstepConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetCoolstepConfiguration), payload)
    }

    /// Note: If you don't know what any of this means you can very likely keep all of
    /// the values as default!
    ///
    /// Sets miscellaneous configuration parameters.
    ///
    /// * Disable Short To Ground Protection: Set to false to enable short to ground protection, otherwise
    ///   it is disabled.
    ///
    /// * Synchronize Phase Frequency: With this parameter you can synchronize the chopper for both phases
    ///   of a two phase motor to avoid the occurrence of a beat. The value range is 0-15. If set to 0,
    ///   the synchronization is turned off. Otherwise the synchronization is done through the formula
    ///   f_sync = f_clk/(value*64). In Classic Mode the synchronization is automatically switched off.
    ///   f_clk is 12.8MHz.
    ///
    /// The default values are:
    ///
    /// * Disable Short To Ground Protection: 0
    /// * Synchronize Phase Frequency: 0
    pub fn set_misc_configuration(
        &self,
        disable_short_to_ground_protection: bool,
        synchronize_phase_frequency: u8,
    ) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(disable_short_to_ground_protection));
        payload[1..2].copy_from_slice(&<u8>::to_le_byte_vec(synchronize_phase_frequency));

        self.device.set(u8::from(SilentStepperBrickFunction::SetMiscConfiguration), payload)
    }

    /// Returns the configuration as set by [`set_misc_configuration`].
    ///
    /// [`set_misc_configuration`]: #method.set_misc_configuration
    pub fn get_misc_configuration(&self) -> ConvertingReceiver<MiscConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetMiscConfiguration), payload)
    }

    /// Returns the current driver status.
    ///
    /// * Open Load: Indicates if an open load is present on phase A, B or both. This could mean that there is a problem
    ///   with the wiring of the motor. False detection can occur in fast motion as well as during stand still.
    ///
    /// * Short To Ground: Indicates if a short to ground is present on phase A, B or both. If this is detected the driver
    ///   automatically becomes disabled and stays disabled until it is enabled again manually.
    ///
    /// * Over Temperature: The over temperature indicator switches to Warning if the driver IC warms up. The warning flag
    ///   is expected during long duration stepper uses. If the temperature limit is reached the indicator switches
    ///   to Limit. In this case the driver becomes disabled until it cools down again.
    ///
    /// * Motor Stalled: Is true if a motor stall was detected.
    ///
    /// * Actual Motor Current: Indicates the actual current control scaling as used in Coolstep mode.
    ///   The returned value is between 0 and 31. It represents a multiplier of 1/32 to 32/32 of the
    ///   ``Motor Run Current`` as set by [`set_basic_configuration`]. Example: If a ``Motor Run Current``
    ///   of 1000mA was set and the returned value is 15, the ``Actual Motor Current`` is 16/32*1000mA = 500mA.
    ///
    /// * Stallguard Result: Indicates the load of the motor. A lower value signals a higher load. Per trial and error
    ///   you can find out which value corresponds to a suitable torque for the velocity used in your application.
    ///   After that you can use this threshold value to find out if a motor stall becomes probable and react on it (e.g.
    ///   decrease velocity).
    ///   During stand still this value can not be used for stall detection, it shows the chopper on-time for motor coil A.
    ///
    /// * Stealth Voltage Amplitude: Shows the actual PWM scaling. In Stealth mode it can be used to detect motor load and
    ///   stall if autoscale is enabled (see [`set_stealth_configuration`]).
    ///
    ///
    /// [`set_basic_configuration`]: #method.set_basic_configuration
    /// [`set_stealth_configuration`]: #method.set_stealth_configuration
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_OPEN_LOAD_NONE
    ///	* SILENT_STEPPER_BRICK_OPEN_LOAD_PHASE_A
    ///	* SILENT_STEPPER_BRICK_OPEN_LOAD_PHASE_B
    ///	* SILENT_STEPPER_BRICK_OPEN_LOAD_PHASE_AB
    ///	* SILENT_STEPPER_BRICK_SHORT_TO_GROUND_NONE
    ///	* SILENT_STEPPER_BRICK_SHORT_TO_GROUND_PHASE_A
    ///	* SILENT_STEPPER_BRICK_SHORT_TO_GROUND_PHASE_B
    ///	* SILENT_STEPPER_BRICK_SHORT_TO_GROUND_PHASE_AB
    ///	* SILENT_STEPPER_BRICK_OVER_TEMPERATURE_NONE
    ///	* SILENT_STEPPER_BRICK_OVER_TEMPERATURE_WARNING
    ///	* SILENT_STEPPER_BRICK_OVER_TEMPERATURE_LIMIT
    pub fn get_driver_status(&self) -> ConvertingReceiver<DriverStatus> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetDriverStatus), payload)
    }

    /// Sets the minimum voltage in mV, below which the [`get_under_voltage_callback_receiver`] receiver
    /// is triggered. The minimum possible value that works with the Silent Stepper
    /// Brick is 8V.
    /// You can use this function to detect the discharge of a battery that is used
    /// to drive the stepper motor. If you have a fixed power supply, you likely do
    /// not need this functionality.
    ///
    /// The default value is 8V.
    ///
    /// [`get_under_voltage_callback_receiver`]: #method.get_under_voltage_callback_receiver
    pub fn set_minimum_voltage(&self, voltage: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(voltage));

        self.device.set(u8::from(SilentStepperBrickFunction::SetMinimumVoltage), payload)
    }

    /// Returns the minimum voltage as set by [`set_minimum_voltage`].
    ///
    /// [`set_minimum_voltage`]: #method.set_minimum_voltage
    pub fn get_minimum_voltage(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetMinimumVoltage), payload)
    }

    /// Sets the time base of the velocity and the acceleration of the Silent Stepper
    /// Brick (in seconds).
    ///
    /// For example, if you want to make one step every 1.5 seconds, you can set
    /// the time base to 15 and the velocity to 10. Now the velocity is
    /// 10steps/15s = 1steps/1.5s.
    ///
    /// The default value is 1.
    pub fn set_time_base(&self, time_base: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(time_base));

        self.device.set(u8::from(SilentStepperBrickFunction::SetTimeBase), payload)
    }

    /// Returns the time base as set by [`set_time_base`].
    ///
    /// [`set_time_base`]: #method.set_time_base
    pub fn get_time_base(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetTimeBase), payload)
    }

    /// Returns the following parameters: The current velocity,
    /// the current position, the remaining steps, the stack voltage, the external
    /// voltage and the current consumption of the stepper motor.
    ///
    /// The current consumption is calculated by multiplying the ``Actual Motor Current``
    /// value (see [`set_basic_configuration`]) with the ``Motor Run Current``
    /// (see [`get_driver_status`]). This is an internal calculation of the
    /// driver, not an independent external measurement.
    ///
    /// The current consumption calculation was broken up to firmware 2.0.1, it is fixed
    /// since firmware 2.0.2.
    ///
    /// There is also a receiver for this function, see [`get_all_data_callback_receiver`] receiver.
    ///
    /// [`set_basic_configuration`]: #method.set_basic_configuration
    /// [`get_driver_status`]: #method.get_driver_status
    /// [`get_all_data_callback_receiver`]: #method.get_all_data_callback_receiver
    pub fn get_all_data(&self) -> ConvertingReceiver<AllData> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetAllData), payload)
    }

    /// Sets the period with which the [`get_all_data_callback_receiver`] receiver is triggered
    /// periodically. A value of 0 turns the receiver off.
    ///
    /// [`get_all_data_callback_receiver`]: #method.get_all_data_callback_receiver
    pub fn set_all_data_period(&self, period: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(period));

        self.device.set(u8::from(SilentStepperBrickFunction::SetAllDataPeriod), payload)
    }

    /// Returns the period as set by [`set_all_data_period`].
    ///
    /// [`set_all_data_period`]: #method.set_all_data_period
    pub fn get_all_data_period(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetAllDataPeriod), payload)
    }

    /// The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is
    /// enabled, the Brick will try to adapt the baudrate for the communication
    /// between Bricks and Bricklets according to the amount of data that is transferred.
    ///
    /// The baudrate will be increased exponentially if lots of data is send/received and
    /// decreased linearly if little data is send/received.
    ///
    /// This lowers the baudrate in applications where little data is transferred (e.g.
    /// a weather station) and increases the robustness. If there is lots of data to transfer
    /// (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.
    ///
    /// In cases where some data has to transferred as fast as possible every few seconds
    /// (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn
    /// the dynamic baudrate off to get the highest possible performance.
    ///
    /// The maximum value of the baudrate can be set per port with the function
    /// [`set_spitfp_baudrate`]. If the dynamic baudrate is disabled, the baudrate
    /// as set by [`set_spitfp_baudrate`] will be used statically.
    ///
    /// The minimum dynamic baudrate has a value range of 400000 to 2000000 baud.
    ///
    /// By default dynamic baudrate is enabled and the minimum dynamic baudrate is 400000.
    ///
    /// [`set_spitfp_baudrate`]: #method.set_spitfp_baudrate
    /// .. versionadded:: 2.0.4$nbsp;(Firmware)
    pub fn set_spitfp_baudrate_config(&self, enable_dynamic_baudrate: bool, minimum_dynamic_baudrate: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 5];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(enable_dynamic_baudrate));
        payload[1..5].copy_from_slice(&<u32>::to_le_byte_vec(minimum_dynamic_baudrate));

        self.device.set(u8::from(SilentStepperBrickFunction::SetSpitfpBaudrateConfig), payload)
    }

    /// Returns the baudrate config, see [`set_spitfp_baudrate_config`].
    ///
    /// [`set_spitfp_baudrate_config`]: #method.set_spitfp_baudrate_config
    /// .. versionadded:: 2.0.4$nbsp;(Firmware)
    pub fn get_spitfp_baudrate_config(&self) -> ConvertingReceiver<SpitfpBaudrateConfig> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetSpitfpBaudrateConfig), payload)
    }

    /// Returns the timeout count for the different communication methods.
    ///
    /// The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks.
    ///
    /// This function is mostly used for debugging during development, in normal operation
    /// the counters should nearly always stay at 0.
    ///
    /// Associated constants:
    /// * SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_NONE
    ///	* SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_USB
    ///	* SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_SPI_STACK
    ///	* SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_CHIBI
    ///	* SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_RS485
    ///	* SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_WIFI
    ///	* SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_ETHERNET
    ///	* SILENT_STEPPER_BRICK_COMMUNICATION_METHOD_WIFI_V2
    pub fn get_send_timeout_count(&self, communication_method: u8) -> ConvertingReceiver<u32> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(communication_method));

        self.device.get(u8::from(SilentStepperBrickFunction::GetSendTimeoutCount), payload)
    }

    /// Sets the baudrate for a specific Bricklet port ('a' - 'd'). The
    /// baudrate can be in the range 400000 to 2000000.
    ///
    /// If you want to increase the throughput of Bricklets you can increase
    /// the baudrate. If you get a high error count because of high
    /// interference (see [`get_spitfp_error_count`]) you can decrease the
    /// baudrate.
    ///
    /// If the dynamic baudrate feature is enabled, the baudrate set by this
    /// function corresponds to the maximum baudrate (see [`set_spitfp_baudrate_config`]).
    ///
    /// Regulatory testing is done with the default baudrate. If CE compatibility
    /// or similar is necessary in you applications we recommend to not change
    /// the baudrate.
    ///
    /// The default baudrate for all ports is 1400000.
    ///
    /// [`set_spitfp_baudrate_config`]: #method.set_spitfp_baudrate_config
    /// [`get_spitfp_error_count`]: #method.get_spitfp_error_count
    pub fn set_spitfp_baudrate(&self, bricklet_port: char, baudrate: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 5];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(bricklet_port));
        payload[1..5].copy_from_slice(&<u32>::to_le_byte_vec(baudrate));

        self.device.set(u8::from(SilentStepperBrickFunction::SetSpitfpBaudrate), payload)
    }

    /// Returns the baudrate for a given Bricklet port, see [`set_spitfp_baudrate`].
    ///
    /// [`set_spitfp_baudrate`]: #method.set_spitfp_baudrate
    pub fn get_spitfp_baudrate(&self, bricklet_port: char) -> ConvertingReceiver<u32> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(bricklet_port));

        self.device.get(u8::from(SilentStepperBrickFunction::GetSpitfpBaudrate), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Brick side. All
    /// Bricklets have a similar function that returns the errors on the Bricklet side.
    pub fn get_spitfp_error_count(&self, bricklet_port: char) -> ConvertingReceiver<SpitfpErrorCount> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(bricklet_port));

        self.device.get(u8::from(SilentStepperBrickFunction::GetSpitfpErrorCount), payload)
    }

    /// Enables the status LED.
    ///
    /// The status LED is the blue LED next to the USB connector. If enabled is is
    /// on and it flickers if data is transfered. If disabled it is always off.
    ///
    /// The default state is enabled.
    pub fn enable_status_led(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(SilentStepperBrickFunction::EnableStatusLed), payload)
    }

    /// Disables the status LED.
    ///
    /// The status LED is the blue LED next to the USB connector. If enabled is is
    /// on and it flickers if data is transfered. If disabled it is always off.
    ///
    /// The default state is enabled.
    pub fn disable_status_led(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(SilentStepperBrickFunction::DisableStatusLed), payload)
    }

    /// Returns *true* if the status LED is enabled, *false* otherwise.
    pub fn is_status_led_enabled(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::IsStatusLedEnabled), payload)
    }

    /// Returns the firmware and protocol version and the name of the Bricklet for a
    /// given port.
    ///
    /// This functions sole purpose is to allow automatic flashing of v1.x.y Bricklet
    /// plugins.
    pub fn get_protocol1_bricklet_name(&self, port: char) -> ConvertingReceiver<Protocol1BrickletName> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(port));

        self.device.get(u8::from(SilentStepperBrickFunction::GetProtocol1BrickletName), payload)
    }

    /// Returns the temperature in °C/10 as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has an
    /// accuracy of ±15%. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Brick. Calling this function
    /// on a Brick inside of a stack will reset the whole stack.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(SilentStepperBrickFunction::Reset), payload)
    }

    /// Returns the UID, the UID where the Brick is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be '0'-'8' (stack position).
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(SilentStepperBrickFunction::GetIdentity), payload)
    }
}