1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/* ***********************************************************
 * This file was automatically generated on 2019-11-25.      *
 *                                                           *
 * Rust Bindings Version 2.0.13                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Reads and writes NFC and RFID tags.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/NFCRFID_Bricklet_Rust.html).
use crate::{
    byte_converter::*, converting_callback_receiver::ConvertingCallbackReceiver, converting_receiver::ConvertingReceiver, device::*,
    ip_connection::GetRequestSender,
};
pub enum NfcRfidBrickletFunction {
    RequestTagId,
    GetTagId,
    GetState,
    AuthenticateMifareClassicPage,
    WritePage,
    RequestPage,
    GetPage,
    GetIdentity,
    CallbackStateChanged,
}
impl From<NfcRfidBrickletFunction> for u8 {
    fn from(fun: NfcRfidBrickletFunction) -> Self {
        match fun {
            NfcRfidBrickletFunction::RequestTagId => 1,
            NfcRfidBrickletFunction::GetTagId => 2,
            NfcRfidBrickletFunction::GetState => 3,
            NfcRfidBrickletFunction::AuthenticateMifareClassicPage => 4,
            NfcRfidBrickletFunction::WritePage => 5,
            NfcRfidBrickletFunction::RequestPage => 6,
            NfcRfidBrickletFunction::GetPage => 7,
            NfcRfidBrickletFunction::GetIdentity => 255,
            NfcRfidBrickletFunction::CallbackStateChanged => 8,
        }
    }
}
pub const NFC_RFID_BRICKLET_TAG_TYPE_MIFARE_CLASSIC: u8 = 0;
pub const NFC_RFID_BRICKLET_TAG_TYPE_TYPE1: u8 = 1;
pub const NFC_RFID_BRICKLET_TAG_TYPE_TYPE2: u8 = 2;
pub const NFC_RFID_BRICKLET_STATE_INITIALIZATION: u8 = 0;
pub const NFC_RFID_BRICKLET_STATE_IDLE: u8 = 128;
pub const NFC_RFID_BRICKLET_STATE_ERROR: u8 = 192;
pub const NFC_RFID_BRICKLET_STATE_REQUEST_TAG_ID: u8 = 2;
pub const NFC_RFID_BRICKLET_STATE_REQUEST_TAG_ID_READY: u8 = 130;
pub const NFC_RFID_BRICKLET_STATE_REQUEST_TAG_ID_ERROR: u8 = 194;
pub const NFC_RFID_BRICKLET_STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE: u8 = 3;
pub const NFC_RFID_BRICKLET_STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE_READY: u8 = 131;
pub const NFC_RFID_BRICKLET_STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE_ERROR: u8 = 195;
pub const NFC_RFID_BRICKLET_STATE_WRITE_PAGE: u8 = 4;
pub const NFC_RFID_BRICKLET_STATE_WRITE_PAGE_READY: u8 = 132;
pub const NFC_RFID_BRICKLET_STATE_WRITE_PAGE_ERROR: u8 = 196;
pub const NFC_RFID_BRICKLET_STATE_REQUEST_PAGE: u8 = 5;
pub const NFC_RFID_BRICKLET_STATE_REQUEST_PAGE_READY: u8 = 133;
pub const NFC_RFID_BRICKLET_STATE_REQUEST_PAGE_ERROR: u8 = 197;
pub const NFC_RFID_BRICKLET_KEY_A: u8 = 0;
pub const NFC_RFID_BRICKLET_KEY_B: u8 = 1;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TagId {
    pub tag_type: u8,
    pub tid_length: u8,
    pub tid: [u8; 7],
}
impl FromByteSlice for TagId {
    fn bytes_expected() -> usize { 9 }
    fn from_le_byte_slice(bytes: &[u8]) -> TagId {
        TagId {
            tag_type: <u8>::from_le_byte_slice(&bytes[0..1]),
            tid_length: <u8>::from_le_byte_slice(&bytes[1..2]),
            tid: <[u8; 7]>::from_le_byte_slice(&bytes[2..9]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct State {
    pub state: u8,
    pub idle: bool,
}
impl FromByteSlice for State {
    fn bytes_expected() -> usize { 2 }
    fn from_le_byte_slice(bytes: &[u8]) -> State {
        State { state: <u8>::from_le_byte_slice(&bytes[0..1]), idle: <bool>::from_le_byte_slice(&bytes[1..2]) }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct StateChangedEvent {
    pub state: u8,
    pub idle: bool,
}
impl FromByteSlice for StateChangedEvent {
    fn bytes_expected() -> usize { 2 }
    fn from_le_byte_slice(bytes: &[u8]) -> StateChangedEvent {
        StateChangedEvent { state: <u8>::from_le_byte_slice(&bytes[0..1]), idle: <bool>::from_le_byte_slice(&bytes[1..2]) }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

/// Reads and writes NFC and RFID tags
#[derive(Clone)]
pub struct NfcRfidBricklet {
    device: Device,
}
impl NfcRfidBricklet {
    pub const DEVICE_IDENTIFIER: u16 = 246;
    pub const DEVICE_DISPLAY_NAME: &'static str = "NFC/RFID Bricklet";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> NfcRfidBricklet {
        let mut result = NfcRfidBricklet { device: Device::new([2, 0, 0], uid, req_sender, 0) };
        result.device.response_expected[u8::from(NfcRfidBrickletFunction::RequestTagId) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(NfcRfidBrickletFunction::GetTagId) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(NfcRfidBrickletFunction::GetState) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(NfcRfidBrickletFunction::AuthenticateMifareClassicPage) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(NfcRfidBrickletFunction::WritePage) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(NfcRfidBrickletFunction::RequestPage) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(NfcRfidBrickletFunction::GetPage) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(NfcRfidBrickletFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::nfc_rfid_bricklet::NfcRfidBricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::nfc_rfid_bricklet::NfcRfidBricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: NfcRfidBrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(&mut self, fun: NfcRfidBrickletFunction, response_expected: bool) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is called if the state of the NFC/RFID Bricklet changes.
    /// See [`get_state`] for more information about the possible states.
    ///
    /// [`get_state`]: #method.get_state
    pub fn get_state_changed_callback_receiver(&self) -> ConvertingCallbackReceiver<StateChangedEvent> {
        self.device.get_callback_receiver(u8::from(NfcRfidBrickletFunction::CallbackStateChanged))
    }

    /// To read or write a tag that is in proximity of the NFC/RFID Bricklet you
    /// first have to call this function with the expected tag type as parameter.
    /// It is no problem if you don't know the tag type. You can cycle through
    /// the available tag types until the tag gives an answer to the request.
    ///
    /// Currently the following tag types are supported:
    ///
    /// * Mifare Classic
    /// * NFC Forum Type 1
    /// * NFC Forum Type 2
    ///
    /// After you call [`request_tag_id`] the NFC/RFID Bricklet will try to read
    /// the tag ID from the tag. After this process is done the state will change.
    /// You can either register the [`get_state_changed_callback_receiver`] receiver or you can poll
    /// [`get_state`] to find out about the state change.
    ///
    /// If the state changes to *RequestTagIDError* it means that either there was
    /// no tag present or that the tag is of an incompatible type. If the state
    /// changes to *RequestTagIDReady* it means that a compatible tag was found
    /// and that the tag ID could be read out. You can now get the tag ID by
    /// calling [`get_tag_id`].
    ///
    /// If two tags are in the proximity of the NFC/RFID Bricklet, this
    /// function will cycle through the tags. To select a specific tag you have
    /// to call [`request_tag_id`] until the correct tag id is found.
    ///
    /// In case of any *Error* state the selection is lost and you have to
    /// start again by calling [`request_tag_id`].
    ///
    /// [`request_tag_id`]: #method.request_tag_id
    /// [`get_tag_id`]: #method.get_tag_id
    /// [`get_state`]: #method.get_state
    /// [`get_state_changed_callback_receiver`]: #method.get_state_changed_callback_receiver
    ///
    /// Associated constants:
    /// * NFC_RFID_BRICKLET_TAG_TYPE_MIFARE_CLASSIC
    ///	* NFC_RFID_BRICKLET_TAG_TYPE_TYPE1
    ///	* NFC_RFID_BRICKLET_TAG_TYPE_TYPE2
    pub fn request_tag_id(&self, tag_type: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(tag_type));

        self.device.set(u8::from(NfcRfidBrickletFunction::RequestTagId), payload)
    }

    /// Returns the tag type, tag ID and the length of the tag ID
    /// (4 or 7 bytes are possible length). This function can only be called if the
    /// NFC/RFID is currently in one of the *Ready* states. The returned ID
    /// is the ID that was saved through the last call of [`request_tag_id`].
    ///
    /// To get the tag ID of a tag the approach is as follows:
    ///
    /// 1. Call [`request_tag_id`]
    /// 2. Wait for state to change to *RequestTagIDReady* (see [`get_state`] or
    ///    [`get_state_changed_callback_receiver`] receiver)
    /// 3. Call [`get_tag_id`]
    ///
    /// [`request_tag_id`]: #method.request_tag_id
    /// [`get_tag_id`]: #method.get_tag_id
    /// [`get_state`]: #method.get_state
    /// [`get_state_changed_callback_receiver`]: #method.get_state_changed_callback_receiver
    ///
    /// Associated constants:
    /// * NFC_RFID_BRICKLET_TAG_TYPE_MIFARE_CLASSIC
    ///	* NFC_RFID_BRICKLET_TAG_TYPE_TYPE1
    ///	* NFC_RFID_BRICKLET_TAG_TYPE_TYPE2
    pub fn get_tag_id(&self) -> ConvertingReceiver<TagId> {
        let payload = vec![0; 0];

        self.device.get(u8::from(NfcRfidBrickletFunction::GetTagId), payload)
    }

    /// Returns the current state of the NFC/RFID Bricklet.
    ///
    /// On startup the Bricklet will be in the *Initialization* state. The
    /// initialization will only take about 20ms. After that it changes to *Idle*.
    ///
    /// The functions of this Bricklet can be called in the *Idle* state and all of
    /// the *Ready* and *Error* states.
    ///
    /// Example: If you call [`request_page`], the state will change to
    /// *RequestPage* until the reading of the page is finished. Then it will change
    /// to either *RequestPageReady* if it worked or to *RequestPageError* if it
    /// didn't. If the request worked you can get the page by calling [`get_page`].
    ///
    /// The same approach is used analogously for the other API functions.
    ///
    /// [`request_page`]: #method.request_page
    /// [`get_page`]: #method.get_page
    ///
    /// Associated constants:
    /// * NFC_RFID_BRICKLET_STATE_INITIALIZATION
    ///	* NFC_RFID_BRICKLET_STATE_IDLE
    ///	* NFC_RFID_BRICKLET_STATE_ERROR
    ///	* NFC_RFID_BRICKLET_STATE_REQUEST_TAG_ID
    ///	* NFC_RFID_BRICKLET_STATE_REQUEST_TAG_ID_READY
    ///	* NFC_RFID_BRICKLET_STATE_REQUEST_TAG_ID_ERROR
    ///	* NFC_RFID_BRICKLET_STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE
    ///	* NFC_RFID_BRICKLET_STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE_READY
    ///	* NFC_RFID_BRICKLET_STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE_ERROR
    ///	* NFC_RFID_BRICKLET_STATE_WRITE_PAGE
    ///	* NFC_RFID_BRICKLET_STATE_WRITE_PAGE_READY
    ///	* NFC_RFID_BRICKLET_STATE_WRITE_PAGE_ERROR
    ///	* NFC_RFID_BRICKLET_STATE_REQUEST_PAGE
    ///	* NFC_RFID_BRICKLET_STATE_REQUEST_PAGE_READY
    ///	* NFC_RFID_BRICKLET_STATE_REQUEST_PAGE_ERROR
    pub fn get_state(&self) -> ConvertingReceiver<State> {
        let payload = vec![0; 0];

        self.device.get(u8::from(NfcRfidBrickletFunction::GetState), payload)
    }

    /// Mifare Classic tags use authentication. If you want to read from or write to
    /// a Mifare Classic page you have to authenticate it beforehand.
    /// Each page can be authenticated with two keys: A (``key_number`` = 0) and B
    /// (``key_number`` = 1). A new Mifare Classic
    /// tag that has not yet been written to can be accessed with key A
    /// and the default key ``[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]``.
    ///
    /// The approach to read or write a Mifare Classic page is as follows:
    ///
    /// 1. Call [`request_tag_id`]
    /// 2. Wait for state to change to *RequestTagIDReady* (see [`get_state`]
    ///    or [`get_state_changed_callback_receiver`] receiver)
    /// 3. If looking for a specific tag then call [`get_tag_id`] and check if the
    ///    expected tag was found, if it was not found go back to step 1
    /// 4. Call [`authenticate_mifare_classic_page`] with page and key for the page
    /// 5. Wait for state to change to *AuthenticatingMifareClassicPageReady* (see
    ///    [`get_state`] or [`get_state_changed_callback_receiver`] receiver)
    /// 6. Call [`request_page`] or [`write_page`] to read/write page
    ///
    /// [`request_tag_id`]: #method.request_tag_id
    /// [`get_tag_id`]: #method.get_tag_id
    /// [`get_state`]: #method.get_state
    /// [`authenticate_mifare_classic_page`]: #method.authenticate_mifare_classic_page
    /// [`write_page`]: #method.write_page
    /// [`request_page`]: #method.request_page
    /// [`get_state_changed_callback_receiver`]: #method.get_state_changed_callback_receiver
    ///
    /// Associated constants:
    /// * NFC_RFID_BRICKLET_KEY_A
    ///	* NFC_RFID_BRICKLET_KEY_B
    pub fn authenticate_mifare_classic_page(&self, page: u16, key_number: u8, key: [u8; 6]) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 9];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(page));
        payload[2..3].copy_from_slice(&<u8>::to_le_byte_vec(key_number));
        payload[3..9].copy_from_slice(&<[u8; 6]>::to_le_byte_vec(key));

        self.device.set(u8::from(NfcRfidBrickletFunction::AuthenticateMifareClassicPage), payload)
    }

    /// Writes 16 bytes starting from the given page. How many pages are written
    /// depends on the tag type. The page sizes are as follows:
    ///
    /// * Mifare Classic page size: 16 byte (one page is written)
    /// * NFC Forum Type 1 page size: 8 byte (two pages are written)
    /// * NFC Forum Type 2 page size: 4 byte (four pages are written)
    ///
    /// The general approach for writing to a tag is as follows:
    ///
    /// 1. Call [`request_tag_id`]
    /// 2. Wait for state to change to *RequestTagIDReady* (see [`get_state`] or
    ///    [`get_state_changed_callback_receiver`] receiver)
    /// 3. If looking for a specific tag then call [`get_tag_id`] and check if the
    ///    expected tag was found, if it was not found got back to step 1
    /// 4. Call [`write_page`] with page number and data
    /// 5. Wait for state to change to *WritePageReady* (see [`get_state`] or
    ///    [`get_state_changed_callback_receiver`] receiver)
    ///
    /// If you use a Mifare Classic tag you have to authenticate a page before you
    /// can write to it. See [`authenticate_mifare_classic_page`].
    ///
    /// [`request_tag_id`]: #method.request_tag_id
    /// [`get_tag_id`]: #method.get_tag_id
    /// [`get_state`]: #method.get_state
    /// [`authenticate_mifare_classic_page`]: #method.authenticate_mifare_classic_page
    /// [`write_page`]: #method.write_page
    /// [`get_state_changed_callback_receiver`]: #method.get_state_changed_callback_receiver
    pub fn write_page(&self, page: u16, data: [u8; 16]) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 18];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(page));
        payload[2..18].copy_from_slice(&<[u8; 16]>::to_le_byte_vec(data));

        self.device.set(u8::from(NfcRfidBrickletFunction::WritePage), payload)
    }

    /// Reads 16 bytes starting from the given page and stores them into a buffer.
    /// The buffer can then be read out with [`get_page`].
    /// How many pages are read depends on the tag type. The page sizes are
    /// as follows:
    ///
    /// * Mifare Classic page size: 16 byte (one page is read)
    /// * NFC Forum Type 1 page size: 8 byte (two pages are read)
    /// * NFC Forum Type 2 page size: 4 byte (four pages are read)
    ///
    /// The general approach for reading a tag is as follows:
    ///
    /// 1. Call [`request_tag_id`]
    /// 2. Wait for state to change to *RequestTagIDReady* (see [`get_state`]
    ///    or [`get_state_changed_callback_receiver`] receiver)
    /// 3. If looking for a specific tag then call [`get_tag_id`] and check if the
    ///    expected tag was found, if it was not found got back to step 1
    /// 4. Call [`request_page`] with page number
    /// 5. Wait for state to change to *RequestPageReady* (see [`get_state`]
    ///    or [`get_state_changed_callback_receiver`] receiver)
    /// 6. Call [`get_page`] to retrieve the page from the buffer
    ///
    /// If you use a Mifare Classic tag you have to authenticate a page before you
    /// can read it. See [`authenticate_mifare_classic_page`].
    ///
    /// [`request_tag_id`]: #method.request_tag_id
    /// [`get_tag_id`]: #method.get_tag_id
    /// [`get_state`]: #method.get_state
    /// [`authenticate_mifare_classic_page`]: #method.authenticate_mifare_classic_page
    /// [`request_page`]: #method.request_page
    /// [`get_page`]: #method.get_page
    /// [`get_state_changed_callback_receiver`]: #method.get_state_changed_callback_receiver
    pub fn request_page(&self, page: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(page));

        self.device.set(u8::from(NfcRfidBrickletFunction::RequestPage), payload)
    }

    /// Returns 16 bytes of data from an internal buffer. To fill the buffer
    /// with specific pages you have to call [`request_page`] beforehand.
    ///
    /// [`request_page`]: #method.request_page
    pub fn get_page(&self) -> ConvertingReceiver<[u8; 16]> {
        let payload = vec![0; 0];

        self.device.get(u8::from(NfcRfidBrickletFunction::GetPage), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c' or 'd'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(NfcRfidBrickletFunction::GetIdentity), payload)
    }
}