1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
//! Capabilities to send data from operators
//!
//! Timely dataflow operators are only able to send data if they possess a "capability",
//! a system-created object which warns the runtime that the operator may still produce
//! output records.
//!
//! The timely dataflow runtime creates a capability and provides it to an operator whenever
//! the operator receives input data. The capabilities allow the operator to respond to the
//! received data, immediately or in the future, for as long as the capability is held.
//!
//! Timely dataflow's progress tracking infrastructure communicates the number of outstanding
//! capabilities across all workers.
//! Each operator may hold on to its capabilities, and may clone, advance, and drop them.
//! Each of these actions informs the timely dataflow runtime of changes to the number of outstanding
//! capabilities, so that the runtime can notice when the count for some capability reaches zero.
//! While an operator can hold capabilities indefinitely, and create as many new copies of them
//! as it would like, the progress tracking infrastructure will not move forward until the
//! operators eventually release their capabilities.
//!
//! Note that these capabilities currently lack the property of "transferability":
//! An operator should not hand its capabilities to some other operator. In the future, we should
//! probably bind capabilities more strongly to a specific operator and output.

use std::ops::Deref;
use std::rc::Rc;
use std::cell::RefCell;
use std::fmt::{self, Debug};

use crate::order::PartialOrder;
use crate::progress::Timestamp;
use crate::progress::ChangeBatch;
use crate::scheduling::Activations;

/// An internal trait expressing the capability to send messages with a given timestamp.
pub trait CapabilityTrait<T: Timestamp> {
    /// The timestamp associated with the capability.
    fn time(&self) -> &T;
    fn valid_for_output(&self, query_buffer: &Rc<RefCell<ChangeBatch<T>>>) -> bool;
}

impl<'a, T: Timestamp, C: CapabilityTrait<T>> CapabilityTrait<T> for &'a C {
    fn time(&self) -> &T { (**self).time() }
    fn valid_for_output(&self, query_buffer: &Rc<RefCell<ChangeBatch<T>>>) -> bool {
        (**self).valid_for_output(query_buffer)
    }
}
impl<'a, T: Timestamp, C: CapabilityTrait<T>> CapabilityTrait<T> for &'a mut C {
    fn time(&self) -> &T { (**self).time() }
    fn valid_for_output(&self, query_buffer: &Rc<RefCell<ChangeBatch<T>>>) -> bool {
        (**self).valid_for_output(query_buffer)
    }
}

/// The capability to send data with a certain timestamp on a dataflow edge.
///
/// Capabilities are used by timely dataflow's progress tracking machinery to restrict and track
/// when user code retains the ability to send messages on dataflow edges. All capabilities are
/// constructed by the system, and should eventually be dropped by the user. Failure to drop
/// a capability (for whatever reason) will cause timely dataflow's progress tracking to stall.
pub struct Capability<T: Timestamp> {
    time: T,
    internal: Rc<RefCell<ChangeBatch<T>>>,
}

impl<T: Timestamp> CapabilityTrait<T> for Capability<T> {
    fn time(&self) -> &T { &self.time }
    fn valid_for_output(&self, query_buffer: &Rc<RefCell<ChangeBatch<T>>>) -> bool {
        Rc::ptr_eq(&self.internal, query_buffer)
    }
}

impl<T: Timestamp> Capability<T> {
    /// The timestamp associated with this capability.
    #[inline]
    pub fn time(&self) -> &T {
        &self.time
    }

    /// Makes a new capability for a timestamp `new_time` greater or equal to the timestamp of
    /// the source capability (`self`).
    ///
    /// This method panics if `self.time` is not less or equal to `new_time`.
    #[inline]
    pub fn delayed(&self, new_time: &T) -> Capability<T> {
        if !self.time.less_equal(new_time) {
            panic!("Attempted to delay {:?} to {:?}, which is not `less_equal` the capability's time.", self, new_time);
        }
        mint(new_time.clone(), self.internal.clone())
    }

    /// Downgrades the capability to one corresponding to `new_time`.
    ///
    /// This method panics if `self.time` is not less or equal to `new_time`.
    #[inline]
    pub fn downgrade(&mut self, new_time: &T) {
        let new_cap = self.delayed(new_time);
        *self = new_cap;
    }
}

/// Creates a new capability at `t` while incrementing (and keeping a reference to) the provided
/// `ChangeBatch`.
/// Declared separately so that it can be kept private when `Capability` is re-exported.
#[inline]
pub fn mint<T: Timestamp>(time: T, internal: Rc<RefCell<ChangeBatch<T>>>) -> Capability<T> {
    internal.borrow_mut().update(time.clone(), 1);
    Capability {
        time,
        internal,
    }
}

// Necessary for correctness. When a capability is dropped, the "internal" `ChangeBatch` needs to be
// updated accordingly to inform the rest of the system that the operator has released its permit
// to send data and request notification at the associated timestamp.
impl<T: Timestamp> Drop for Capability<T> {
    #[inline]
    fn drop(&mut self) {
        self.internal.borrow_mut().update(self.time.clone(), -1);
    }
}

impl<T: Timestamp> Clone for Capability<T> {
    #[inline]
    fn clone(&self) -> Capability<T> {
        mint(self.time.clone(), self.internal.clone())
    }
}

impl<T: Timestamp> Deref for Capability<T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        &self.time
    }
}

impl<T: Timestamp> Debug for Capability<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Capability {{ time: {:?}, internal: ... }}", self.time)
    }
}

impl<T: Timestamp> PartialEq for Capability<T> {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.time() == other.time() && Rc::ptr_eq(&self.internal, &other.internal)
    }
}
impl<T: Timestamp> Eq for Capability<T> { }

impl<T: Timestamp> PartialOrder for Capability<T> {
    #[inline]
    fn less_equal(&self, other: &Self) -> bool {
        self.time().less_equal(other.time()) && Rc::ptr_eq(&self.internal, &other.internal)
    }
}

impl<T: Timestamp> ::std::hash::Hash for Capability<T> {
    #[inline]
    fn hash<H: ::std::hash::Hasher>(&self, state: &mut H) {
        self.time.hash(state);
    }
}

/// An unowned capability, which can be used but not retained.
///
/// The capability reference supplies a `retain(self)` method which consumes the reference
/// and turns it into an owned capability
pub struct CapabilityRef<'cap, T: Timestamp+'cap> {
    time: &'cap T,
    internal: Rc<RefCell<Vec<Rc<RefCell<ChangeBatch<T>>>>>>,
}

impl<'cap, T: Timestamp+'cap> CapabilityTrait<T> for CapabilityRef<'cap, T> {
    fn time(&self) -> &T { self.time }
    fn valid_for_output(&self, query_buffer: &Rc<RefCell<ChangeBatch<T>>>) -> bool {
        // let borrow = ;
        self.internal.borrow().iter().any(|rc| Rc::ptr_eq(rc, query_buffer))
    }
}

impl<'cap, T: Timestamp+'cap> CapabilityRef<'cap, T> {
    /// The timestamp associated with this capability.
    #[inline]
    pub fn time(&self) -> &T {
        self.time
    }

    /// Makes a new capability for a timestamp `new_time` greater or equal to the timestamp of
    /// the source capability (`self`).
    ///
    /// This method panics if `self.time` is not less or equal to `new_time`.
    #[inline]
    pub fn delayed(&self, new_time: &T) -> Capability<T> {
        self.delayed_for_output(new_time, 0)
    }

    /// Delays capability for a specific output port.
    pub fn delayed_for_output(&self, new_time: &T, output_port: usize) -> Capability<T> {
        // TODO : Test operator summary?
        if !self.time.less_equal(new_time) {
            panic!("Attempted to delay {:?} to {:?}, which is not `less_equal` the capability's time.", self, new_time);
        }
        if output_port < self.internal.borrow().len() {
            mint(new_time.clone(), self.internal.borrow()[output_port].clone())
        }
        else {
            panic!("Attempted to acquire a capability for a non-existent output port.");
        }
    }

    /// Transform to an owned capability.
    ///
    /// This method produces an owned capability which must be dropped to release the
    /// capability. Users should take care that these capabilities are only stored for
    /// as long as they are required, as failing to drop them may result in livelock.
    #[inline]
    pub fn retain(self) -> Capability<T> {
        // mint(self.time.clone(), self.internal)
        self.retain_for_output(0)
    }

    /// Transforms to an owned capability for a specific output port.
    pub fn retain_for_output(self, output_port: usize) -> Capability<T> {
        if output_port < self.internal.borrow().len() {
            mint(self.time.clone(), self.internal.borrow()[output_port].clone())
        }
        else {
            panic!("Attempted to acquire a capability for a non-existent output port.");
        }
    }
}

impl<'cap, T: Timestamp> Deref for CapabilityRef<'cap, T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        self.time
    }
}

impl<'cap, T: Timestamp> Debug for CapabilityRef<'cap, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "CapabilityRef {{ time: {:?}, internal: ... }}", self.time)
    }
}


/// Creates a new capability at `t` while incrementing (and keeping a reference to) the provided
/// `ChangeBatch`.
/// Declared separately so that it can be kept private when `Capability` is re-exported.
#[inline]
pub fn mint_ref<'cap, T: Timestamp>(time: &'cap T, internal: Rc<RefCell<Vec<Rc<RefCell<ChangeBatch<T>>>>>>) -> CapabilityRef<'cap, T> {
    CapabilityRef {
        time,
        internal,
    }
}

/// Capability that activates on drop.
#[derive(Clone)]
pub struct ActivateCapability<T: Timestamp> {
    pub(crate) capability: Capability<T>,
    pub(crate) address: Rc<Vec<usize>>,
    pub(crate) activations: Rc<RefCell<Activations>>,
}

impl<T: Timestamp> CapabilityTrait<T> for ActivateCapability<T> {
    fn time(&self) -> &T { self.capability.time() }
    fn valid_for_output(&self, query_buffer: &Rc<RefCell<ChangeBatch<T>>>) -> bool {
        self.capability.valid_for_output(query_buffer)
    }
}

impl<T: Timestamp> ActivateCapability<T> {
    /// Creates a new activating capability.
    pub fn new(capability: Capability<T>, address: &[usize], activations: Rc<RefCell<Activations>>) -> Self {
        Self {
            capability,
            address: Rc::new(address.to_vec()),
            activations,
        }
    }
    /// The timestamp associated with this capability.
    pub fn time(&self) -> &T {
        self.capability.time()
    }
    /// Creates a new delayed capability.
    pub fn delayed(&self, time: &T) -> Self {
        ActivateCapability {
            capability: self.capability.delayed(time),
            address: self.address.clone(),
            activations: self.activations.clone(),
        }
    }
    /// Downgrades this capability.
    pub fn downgrade(&mut self, time: &T) {
        self.capability.downgrade(time);
        self.activations.borrow_mut().activate(&self.address[..]);
    }
}

impl<T: Timestamp> Drop for ActivateCapability<T> {
    fn drop(&mut self) {
        self.activations.borrow_mut().activate(&self.address[..]);
    }
}

/// A set of capabilities, for possibly incomparable times.
#[derive(Clone, Debug)]
pub struct CapabilitySet<T: Timestamp> {
    elements: Vec<Capability<T>>,
}

impl<T: Timestamp> CapabilitySet<T> {

    /// Allocates an empty capability set.
    pub fn new() -> Self {
        CapabilitySet { elements: Vec::new() }
    }

    /// Allocates a capability set containing a single capability.
    ///
    /// # Examples
    /// ```
    /// use std::collections::HashMap;
    /// use timely::dataflow::{
    ///     operators::{ToStream, generic::Operator},
    ///     channels::pact::Pipeline,
    /// };
    /// use timely::dataflow::operators::CapabilitySet;
    ///
    /// timely::example(|scope| {
    ///     vec![()].into_iter().to_stream(scope)
    ///         .unary_frontier(Pipeline, "example", |default_cap, _info| {
    ///             let mut cap = CapabilitySet::from_elem(default_cap);
    ///             let mut vector = Vec::new();
    ///             move |input, output| {
    ///                 cap.downgrade(&input.frontier().frontier());
    ///                 while let Some((time, data)) = input.next() {
    ///                     data.swap(&mut vector);
    ///                 }
    ///                 let a_cap = cap.first();
    ///                 if let Some(a_cap) = a_cap.as_ref() {
    ///                     output.session(a_cap).give(());
    ///                 }
    ///             }
    ///         });
    /// });
    /// ```
    pub fn from_elem(cap: Capability<T>) -> Self {
        CapabilitySet { elements: vec![cap] }
    }

    /// Inserts `capability` into the set, discarding redundant capabilities.
    pub fn insert(&mut self, capability: Capability<T>) {
        if !self.elements.iter().any(|c| c.less_equal(&capability)) {
            self.elements.retain(|c| !capability.less_equal(c));
            self.elements.push(capability);
        }
    }

    /// Creates a new capability to send data at `time`.
    ///
    /// This method panics if there does not exist a capability in `self.elements` less or equal to `time`.
    pub fn delayed(&self, time: &T) -> Capability<T> {
        self.elements.iter().find(|c| c.time().less_equal(time)).unwrap().delayed(time)
    }

    /// Downgrades the set of capabilities to correspond with the times in `frontier`.
    ///
    /// This method panics if any element of `frontier` is not greater or equal to some element of `self.elements`.
    pub fn downgrade<B, F>(&mut self, frontier: F)
    where
        B: std::borrow::Borrow<T>,
        F: IntoIterator<Item=B>,
    {
        let count = self.elements.len();
        for time in frontier.into_iter() {
            let capability = self.delayed(time.borrow());
            self.elements.push(capability);
        }
        self.elements.drain(..count);
    }
}

impl<T: Timestamp> Deref for CapabilitySet<T> {
    type Target=[Capability<T>];

    fn deref(&self) -> &[Capability<T>] {
        &self.elements[..]
    }
}