1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//! Handles to an operator's input and output streams.
//!
//! These handles are used by the generic operator interfaces to allow user closures to interact as
//! the operator would with its input and output streams.

use std::rc::Rc;
use std::cell::RefCell;

use crate::Data;
use crate::progress::Timestamp;
use crate::progress::ChangeBatch;
use crate::progress::frontier::MutableAntichain;
use crate::dataflow::channels::pullers::Counter as PullCounter;
use crate::dataflow::channels::pushers::Counter as PushCounter;
use crate::dataflow::channels::pushers::buffer::{Buffer, Session};
use crate::dataflow::channels::Bundle;
use crate::communication::{Push, Pull, message::RefOrMut};
use crate::logging::TimelyLogger as Logger;

use crate::dataflow::operators::CapabilityRef;
use crate::dataflow::operators::capability::mint_ref as mint_capability_ref;
use crate::dataflow::operators::capability::CapabilityTrait;

/// Handle to an operator's input stream.
pub struct InputHandle<T: Timestamp, D, P: Pull<Bundle<T, D>>> {
    pull_counter: PullCounter<T, D, P>,
    internal: Rc<RefCell<Vec<Rc<RefCell<ChangeBatch<T>>>>>>,
    logging: Option<Logger>,
}

/// Handle to an operator's input stream and frontier.
pub struct FrontieredInputHandle<'a, T: Timestamp, D: 'a, P: Pull<Bundle<T, D>>+'a> {
    /// The underlying input handle.
    pub handle: &'a mut InputHandle<T, D, P>,
    /// The frontier as reported by timely progress tracking.
    pub frontier: &'a MutableAntichain<T>,
}

impl<'a, T: Timestamp, D: Data, P: Pull<Bundle<T, D>>> InputHandle<T, D, P> {

    /// Reads the next input buffer (at some timestamp `t`) and a corresponding capability for `t`.
    /// The timestamp `t` of the input buffer can be retrieved by invoking `.time()` on the capability.
    /// Returns `None` when there's no more data available.
    #[inline]
    pub fn next(&mut self) -> Option<(CapabilityRef<T>, RefOrMut<Vec<D>>)> {
        let internal = &self.internal;
        self.pull_counter.next().map(|bundle| {
            match bundle.as_ref_or_mut() {
                RefOrMut::Ref(bundle) => {
                    (mint_capability_ref(&bundle.time, internal.clone()), RefOrMut::Ref(&bundle.data))
                },
                RefOrMut::Mut(bundle) => {
                    (mint_capability_ref(&bundle.time, internal.clone()), RefOrMut::Mut(&mut bundle.data))
                },
            }
        })
    }

    /// Repeatedly calls `logic` till exhaustion of the available input data.
    /// `logic` receives a capability and an input buffer.
    ///
    /// # Examples
    /// ```
    /// use timely::dataflow::operators::ToStream;
    /// use timely::dataflow::operators::generic::Operator;
    /// use timely::dataflow::channels::pact::Pipeline;
    ///
    /// timely::example(|scope| {
    ///     (0..10).to_stream(scope)
    ///            .unary(Pipeline, "example", |_cap, _info| |input, output| {
    ///                input.for_each(|cap, data| {
    ///                    output.session(&cap).give_vec(&mut data.replace(Vec::new()));
    ///                });
    ///            });
    /// });
    /// ```
    #[inline]
    pub fn for_each<F: FnMut(CapabilityRef<T>, RefOrMut<Vec<D>>)>(&mut self, mut logic: F) {
        // We inline `next()` so that we can use `self.logging` without cloning (and dropping) the logger.
        let internal = &self.internal;
        while let Some((cap, data)) = self.pull_counter.next().map(|bundle| {
            match bundle.as_ref_or_mut() {
                RefOrMut::Ref(bundle) => {
                    (mint_capability_ref(&bundle.time, internal.clone()), RefOrMut::Ref(&bundle.data))
                },
                RefOrMut::Mut(bundle) => {
                    (mint_capability_ref(&bundle.time, internal.clone()), RefOrMut::Mut(&mut bundle.data))
                },
            }
        }) {
            self.logging.as_mut().map(|l| l.log(crate::logging::GuardedMessageEvent { is_start: true }));
            logic(cap, data);
            self.logging.as_mut().map(|l| l.log(crate::logging::GuardedMessageEvent { is_start: false }));
        }
    }

}

impl<'a, T: Timestamp, D: Data, P: Pull<Bundle<T, D>>+'a> FrontieredInputHandle<'a, T, D, P> {
    /// Allocate a new frontiered input handle.
    pub fn new(handle: &'a mut InputHandle<T, D, P>, frontier: &'a MutableAntichain<T>) -> Self {
        FrontieredInputHandle {
            handle,
            frontier,
        }
    }

    /// Reads the next input buffer (at some timestamp `t`) and a corresponding capability for `t`.
    /// The timestamp `t` of the input buffer can be retrieved by invoking `.time()` on the capability.
    /// Returns `None` when there's no more data available.
    #[inline]
    pub fn next(&mut self) -> Option<(CapabilityRef<T>, RefOrMut<Vec<D>>)> {
        self.handle.next()
    }

    /// Repeatedly calls `logic` till exhaustion of the available input data.
    /// `logic` receives a capability and an input buffer.
    ///
    /// # Examples
    /// ```
    /// use timely::dataflow::operators::ToStream;
    /// use timely::dataflow::operators::generic::Operator;
    /// use timely::dataflow::channels::pact::Pipeline;
    ///
    /// timely::example(|scope| {
    ///     (0..10).to_stream(scope)
    ///            .unary(Pipeline, "example", |_cap,_info| |input, output| {
    ///                input.for_each(|cap, data| {
    ///                    output.session(&cap).give_vec(&mut data.replace(Vec::new()));
    ///                });
    ///            });
    /// });
    /// ```
    #[inline]
    pub fn for_each<F: FnMut(CapabilityRef<T>, RefOrMut<Vec<D>>)>(&mut self, logic: F) {
        self.handle.for_each(logic)
    }

    /// Inspect the frontier associated with this input.
    #[inline]
    pub fn frontier(&self) -> &'a MutableAntichain<T> {
        self.frontier
    }
}

pub fn _access_pull_counter<T: Timestamp, D, P: Pull<Bundle<T, D>>>(input: &mut InputHandle<T, D, P>) -> &mut PullCounter<T, D, P> {
    &mut input.pull_counter
}

/// Constructs an input handle.
/// Declared separately so that it can be kept private when `InputHandle` is re-exported.
pub fn new_input_handle<T: Timestamp, D, P: Pull<Bundle<T, D>>>(pull_counter: PullCounter<T, D, P>, internal: Rc<RefCell<Vec<Rc<RefCell<ChangeBatch<T>>>>>>, logging: Option<Logger>) -> InputHandle<T, D, P> {
    InputHandle {
        pull_counter,
        internal,
        logging,
    }
}

/// An owned instance of an output buffer which ensures certain API use.
///
/// An `OutputWrapper` exists to prevent anyone from using the wrapped buffer in any way other
/// than with an `OutputHandle`, whose methods ensure that capabilities are used and that the
/// pusher is flushed (via the `cease` method) once it is no longer used.
pub struct OutputWrapper<T: Timestamp, D, P: Push<Bundle<T, D>>> {
    push_buffer: Buffer<T, D, PushCounter<T, D, P>>,
    internal_buffer: Rc<RefCell<ChangeBatch<T>>>,
}

impl<T: Timestamp, D, P: Push<Bundle<T, D>>> OutputWrapper<T, D, P> {
    /// Creates a new output wrapper from a push buffer.
    pub fn new(push_buffer: Buffer<T, D, PushCounter<T, D, P>>, internal_buffer: Rc<RefCell<ChangeBatch<T>>>) -> Self {
        OutputWrapper {
            push_buffer,
            internal_buffer,
        }
    }
    /// Borrows the push buffer into a handle, which can be used to send records.
    ///
    /// This method ensures that the only access to the push buffer is through the `OutputHandle`
    /// type which ensures the use of capabilities, and which calls `cease` when it is dropped.
    pub fn activate(&mut self) -> OutputHandle<T, D, P> {
        OutputHandle {
            push_buffer: &mut self.push_buffer,
            internal_buffer: &self.internal_buffer,
        }
    }
}


/// Handle to an operator's output stream.
pub struct OutputHandle<'a, T: Timestamp, D: 'a, P: Push<Bundle<T, D>>+'a> {
    push_buffer: &'a mut Buffer<T, D, PushCounter<T, D, P>>,
    internal_buffer: &'a Rc<RefCell<ChangeBatch<T>>>,
}

impl<'a, T: Timestamp, D, P: Push<Bundle<T, D>>> OutputHandle<'a, T, D, P> {
    /// Obtains a session that can send data at the timestamp associated with capability `cap`.
    ///
    /// In order to send data at a future timestamp, obtain a capability for the new timestamp
    /// first, as show in the example.
    ///
    /// # Examples
    /// ```
    /// use timely::dataflow::operators::ToStream;
    /// use timely::dataflow::operators::generic::Operator;
    /// use timely::dataflow::channels::pact::Pipeline;
    ///
    /// timely::example(|scope| {
    ///     (0..10).to_stream(scope)
    ///            .unary(Pipeline, "example", |_cap, _info| |input, output| {
    ///                input.for_each(|cap, data| {
    ///                    let time = cap.time().clone() + 1;
    ///                    output.session(&cap.delayed(&time))
    ///                          .give_vec(&mut data.replace(Vec::new()));
    ///                });
    ///            });
    /// });
    /// ```
    pub fn session<'b, C: CapabilityTrait<T>>(&'b mut self, cap: &'b C) -> Session<'b, T, D, PushCounter<T, D, P>> where 'a: 'b {
        assert!(cap.valid_for_output(&self.internal_buffer), "Attempted to open output session with invalid capability");
        self.push_buffer.session(cap.time())
    }
}

impl<'a, T: Timestamp, D, P: Push<Bundle<T, D>>> Drop for OutputHandle<'a, T, D, P> {
    fn drop(&mut self) {
        self.push_buffer.cease();
    }
}