1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use std::fmt;
use std::cmp::min;
pub use self::tilenet::{TileNet, TileNetProxy};

mod tilenet;

/// Tile iterator returning tiles from the `tile_net::TileNet`.
///
/// ```
/// use tile_net::{Line, Vector, TileNet};
///
/// let map: TileNet<usize> = TileNet::sample();
/// let iter = (0..10).map(|x| (x, 3));
/// let set = map.collide_set(iter);
/// set.map(|x| println!("{:?}", x)).count();
///
/// let map = TileNet::sample();
/// let line = Line::from_origin(Vector(10.0, 5.0));
/// let cover = line.supercover();
/// let set = map.collide_set(cover);
/// for tile in set {
/// 	println!("{:?}", tile);
/// }
/// ```
///
/// The ideal version of this library is quite simple:
///
/// ```ignore
/// // Pseudocode
/// use tile_net::{TileNet, Line};
/// let map: TileNet<MyTile> = TileNet::new((1000, 1000));
/// initialize_map(&mut map);
/// 'main: loop {
/// 	handle_events(&mut world);
/// 	// Physics for collidable units
/// 		run!(
/// 		{
/// 			for coll in world.collidables_mut() {
/// 				match map.collides(coll) {
/// 					TileNet::NoCollision => coll.allow_move(),
/// 					TileNet::Collision(collset) => coll.deny_move(&collset),
/// 				}
/// 			}
///   } until TileBased::is_resolved(&coll));
/// }
/// ```
#[derive(Clone)]
pub struct TileSet<'a, T, I>
	where T: 'a
{
	tilenet: &'a TileNet<T>,
	points: I,
	last_coord: (i32, i32),
}

impl<'a, T, I> TileSet<'a, T, I>
	where T: 'a,
	      I: Iterator<Item = (i32, i32)>
{
	/// Get the coordinate of the last tile
	///
	/// When iterating over the tileset, it may be useful to get the last
	/// coordinate. This function provides you this coordinate.
	pub fn get_coords(&self) -> (i32, i32) {
		self.last_coord
	}
}

impl<'a, T, I> Iterator for TileSet<'a, T, I>
	where T: 'a,
	      I: Iterator<Item = (i32, i32)>
{
	type Item = &'a T;
	fn next(&mut self) -> Option<Self::Item> {
		loop {
			if let Some(point) = self.points.next() {
				self.last_coord = point;
				if point.0 >= 0 && point.1 >= 0 && point.0 < self.tilenet.get_size().0 as i32 &&
				   point.1 < self.tilenet.get_size().1 as i32 {
					return self.tilenet.get((point.0 as usize, point.1 as usize));
				} else {
					continue;
				}
			} else {
				return None;
			}
		}
	}
}

impl<'a, T, I> fmt::Debug for TileSet<'a, T, I>
	where T: 'a + Clone + fmt::Debug,
	      I: Clone + Iterator<Item = (i32, i32)>
{
	fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
		let viewer = self.clone();
		for tile in viewer {
			try!(write!(formatter, "{:?} ", tile));
		}
		Ok(())
	}
}

/// Tile iterator for a rectangular view of the `tile_net::TileNet`.
///
/// Used to cull the amount of tiles to draw. You provide it with a desired
/// rectangle, and the tileview will be your iterator iterating over only
/// the desired tiles.
#[derive(Clone)]
pub struct TileView<'a, T>
	where T: 'a
{
	tilenet: &'a TileNet<T>,
	rectangle: (usize, usize, usize, usize),
	current: (usize, usize),
}

impl<'a, T> TileView<'a, T>
    where T: 'a
{
	fn new(tilenet: &'a TileNet<T>,
	       mut rectangle: (usize, usize, usize, usize))
	       -> TileView<'a, T> {
		rectangle.1 = min(rectangle.1, tilenet.get_size().0);
		rectangle.3 = min(rectangle.3, tilenet.get_size().1);
		TileView {
			tilenet: tilenet,
			rectangle: rectangle,
			current: (rectangle.0, rectangle.2),
		}
	}
}

impl<'a, T> Iterator for TileView<'a, T>
    where T: 'a
{
	type Item = (&'a T, usize, usize);
	fn next(&mut self) -> Option<Self::Item> {
		if self.current.1 >= self.rectangle.3 {
			return None;
		}
		let tile = self.tilenet.get(self.current).map(|x| (x, self.current.0, self.current.1));

		self.current.0 += 1;
		if self.current.0 >= self.rectangle.1 {
			self.current.1 += 1;
			self.current.0 = self.rectangle.0;
		}
		tile
	}
}

impl<'a, T> fmt::Debug for TileView<'a, T>
    where T: 'a + Clone + fmt::Debug
{
	fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
		let biggest = self.clone().map(|x| format!("{:?}", x).len()).max();
		let viewer = self.clone();
		let width = viewer.rectangle.1 - viewer.rectangle.0;
		for (index, tile) in viewer.enumerate() {
			if index % width == 0 && index != 0 {
				try!(formatter.write_str("\n"));
			}
			let mut current = format!("{:?}", tile);
			let length = current.len();
			if let Some(biggest) = biggest {
				(0..biggest - length).map(|_| current.push(' ')).count();
			}
			try!(write!(formatter, "{} ", current));
		}
		Ok(())
	}
}