1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#![cfg_attr(feature = "dev", allow(unstable_features))]
#![cfg_attr(feature = "dev", feature(plugin))]
#![cfg_attr(feature = "dev", plugin(clippy))]
#![deny(missing_docs)]
//! `TileNet` holds integer aligned tiles for broad phase continuous collision detection.
//! The purpose of `TileNet` is to have a solid, tile-based, continuous, simple collision
//! library for aspiring game programmers.
//!
//! # How it works #
//! The library is built on the DDA Supercover algorithm, which is an extension of
//! Bresenham's algorithm. For each moving vertex it creates a line. Each line's
//! overlapping tiles are reported. Your dynamic object decides how it should move.
//! It may adjust speed, and retry the collision. It may also accept and move.
//!
//! # Limitations #
//! The library will experience problems with huge coordinates. This is because adding
//! a small increment to a floating point above 2^24 may not register at all. Precision
//! becomes worse as you approach 2^24. The technical reason is that a 32-bit float
//! has 24 bits in its mantissa.
//! You do not need to worry about floating point errors, as the library ensures consistency
//! by checking end-points.
//!
//! # Examples - Setting Up #
//! We start out by including tile net into our program and creating an empty net
//!
//! ```
//! extern crate tile_net;
//! use tile_net::*;
//! fn main() {
//!   let net: TileNet<usize> = TileNet::new(10, 10);
//!   println!["{:?}", net];
//! }
//!
//! ```
//! This creates a `TileNet` that contains `usize` as its elements.
//! All tiles are initialized to `Default` of `usize`.
//! You can now edit various tiles:
//!
//! ```
//! extern crate tile_net;
//! use tile_net::*;
//! fn main() {
//!   let mut net: TileNet<usize> = TileNet::new(10, 10);
//!   net.set(&1, (9, 0));
//!   println!["{:?}", net];
//! }
//!
//! ```
//!
//! There are several helper functions so you can easily draw something interesting
//!
//! ```
//! extern crate tile_net;
//! use tile_net::*;
//! fn main() {
//!   let mut net: TileNet<usize> = TileNet::new(10, 10);
//!   net.set_row(&1, 0);
//!   net.set_row(&1, 9);
//!   net.set_col(&1, 0);
//!   net.set_col(&1, 9);
//!   net.set_box(&1, (3, 3), (5, 7));
//!   println!["{:?}", net];
//! }
//!
//! ```
//!
//! You can use any element in `TileNet` as long as it has the following traits:
//!
//! ```
//! extern crate tile_net;
//! use tile_net::*;
//! #[derive(Clone, Debug, Default)]
//! struct Example(i32);
//! fn main() {
//!   let mut net: TileNet<Example> = TileNet::new(10, 10);  // Requires Default trait
//!   net.set_row(&Example(1), 0);  // Requires Clone trait
//!   net.set_row(&Example(2), 9);
//!   net.set_col(&Example(3), 0);
//!   net.set_col(&Example(4), 9);
//!   net.set_box(&Example(5), (3, 3), (5, 7));
//!   println!["{:?}", net];  // Requires Debug trait
//! }
//! ```
//!
//! # Collision Detection #
//! `TileNet` is not used for drawing tiles to a grid, its main focus is continuous, tile-vertex
//! collision detection.
//! Continuous collision detection (CCD) prevents objects tunneling through other objects in a
//! frame. This happens
//! when we only check the beginning and end points of an object's movement. This library
//! interpolates on each
//! tile. So every intermediate tile is checked. Let's see an example.
//!
//! ```
//! extern crate tile_net;
//! use tile_net::*;
//!
//! fn main() {
//!   let mut net: TileNet<usize> = TileNet::new(10, 10);
//!   net.set_row(&1, 0);
//!   net.set_row(&2, 9);
//!   net.set_col(&3, 0);
//!   net.set_col(&4, 9);
//!   net.set_box(&5, (3, 3), (5, 7));
//!   println!["{:?}", net];
//!
//!   // We create a new object with speed (100, 100) and check where our collision points will be!
//!   let mut collider = MyObject::new();
//!   let supercover = collider.tiles();  // This is the supercover of the current movement
//!   // in the grid, it just returns integer points of every tile that collider touches
//!   let tiles = net.collide_set(supercover);
//!   if collider.resolve(tiles, &mut ()) {
//!     println!["Able to move"];
//!   } else {
//!     println!["Unable to move"];
//!   }
//! }
//!
//! #[derive(Debug)]
//! struct MyObject {
//!   pts: Vec<(f32, f32)>,
//!   pos: Vector,
//!   mov: Vector,
//! }
//!
//! impl MyObject {
//!   fn new() -> MyObject {
//!     MyObject {
//!       // These are the points in object-space
//!       pts: vec![(0.0, 0.0), (1.0, 0.0), (0.0, 1.0), (1.0, 1.0)],
//!       // The current position of the object
//!       pos: Vector(1.1, 1.1),
//!       // The movement vector
//!       mov: Vector(100.0, 100.0),
//!     }
//!   }
//!
//! }
//!
//! impl Collable<usize, ()> for MyObject {
//!   // This function returns the vertices of the object
//!   // The points are used by the collision engine to create a set of
//!   // lines from the beginning to the end of the frame.
//!   fn points<'a>(&'a self) -> Points<'a> {
//!     Points::new(self.pos, &self.pts)
//!   }
//!
//!   // The physics engine uses this function in conjunction with points to compute
//!   // the lines - and thus - tiles it will iterate over during a collision test.
//!   fn queued(&self) -> Vector {
//!     self.mov
//!   }
//!
//!   // Here is where your magic happens!
//!   // You will be given a TileSet, which contains all tiles which your object
//!   // collides between the current frame jump.
//!   // The tiles given are in nearest-order, so the first tiles you get from the
//!   // iterator are always the ones you will collide with first.
//!   fn resolve<'a, I>(&mut self, mut set: TileSet<'a, usize, I>, _state: &mut ()) -> bool
//!     where I: Iterator<Item = (i32, i32)>
//!   {
//!     if set.all(|x| *x == 0) {  // If there is no collision (we only collide with non-zero tiles)
//!       self.pos = self.pos + self.mov;
//!       self.mov = Vector(0.0, 0.0);
//!       true
//!     } else if self.mov.norm2sq() > 1e-6 {  // There was collision, but our speed isn't tiny
//!       self.mov.scale(0.9);
//!       false
//!     } else {  // This may happen if we generate a world where we're stuck in a tile,
//!               // normally this will never happen, this library can preserve consistency
//!               // perfectly.
//!       true
//!     }
//!   }
//! }
//! ```
//!
//! What you can do with `resolve` is to run it in a loop. After scaling down the movement vector
//! sufficiently in `resolve`, you may end up with a `TileSet` that does not cause collision.
//! This is how we can almost perfectly find the position.
//! You may employ other methods inside resolve. Whatever suits your needs.
//! Here is the example again but this time we resolve the collision using a loop
//!
//! ```
//! extern crate tile_net;
//! use tile_net::*;
//!
//! fn main() {
//!   let mut net: TileNet<usize> = TileNet::new(10, 10);
//!   net.set_row(&1, 0);
//!   net.set_row(&2, 9);
//!   net.set_col(&3, 0);
//!   net.set_col(&4, 9);
//!   net.set_box(&5, (3, 3), (5, 7));
//!   println!["{:?}", net];
//!
//!   // Movement vector is (100, 100), which is way outside the box
//!   let mut collider = MyObject::new();
//!   loop {
//!     let supercover = collider.tiles();
//!     let tiles = net.collide_set(supercover);
//!     if collider.resolve(tiles, &mut ()) {
//!       println!["Able to move"];
//!       break;
//!     } else {
//!       println!["Unable to move"];
//!     }
//!   }
//!   // We are interested in the final position!
//!   println!["{:?}", collider];
//! }
//!
//! #[derive(Debug)]
//! struct MyObject {
//!   pts: Vec<(f32, f32)>,
//!   pos: Vector,
//!   mov: Vector,
//! }
//!
//! impl MyObject {
//!   fn new() -> MyObject {
//!     MyObject {
//!       pts: vec![(0.0, 0.0), (1.0, 0.0), (0.0, 1.0), (1.0, 1.0)],
//!       pos: Vector(1.1, 1.1),
//!       mov: Vector(100.0, 100.0),
//!     }
//!   }
//!
//! }
//!
//! impl Collable<usize, ()> for MyObject {
//!   // This function returns the vertices of the object
//!   // The points are used by the collision engine to create a set of
//!   // lines from the beginning to the end of the frame.
//!   fn points<'a>(&'a self) -> Points<'a> {
//!     Points::new(self.pos, &self.pts)
//!   }
//!
//!   // The physics engine uses this function in conjunction with points to compute
//!   // the lines - and thus - tiles it will iterate over during a collision test.
//!   fn queued(&self) -> Vector {
//!     self.mov
//!   }
//!
//!   // Here is where your magic happens!
//!   // You will be given a TileSet, which contains all tiles which your object
//!   // collides between the current frame jump.
//!   // The tiles given are in nearest-order, so the first tiles you get from the
//!   // iterator are always the ones you will collide with first.
//!   fn resolve<'a, I>(&mut self, mut set: TileSet<'a, usize, I>, _state: &mut ()) -> bool
//!     where I: Iterator<Item = (i32, i32)>
//!   {
//!     if set.all(|x| *x == 0) {  // If there is no collision (we only collide with non-zero tiles)
//!       self.pos = self.pos + self.mov;
//!       self.mov = Vector(0.0, 0.0);
//!       true  // Means we resolved correctly
//!     } else if self.mov.norm2sq() > 1e-6 {  // There was collision, but our speed isn't tiny
//!       self.mov.scale(0.9);
//!       false  // Means we did not resolve collision
//!     } else {
//!       true
//!     }
//!   }
//! }
//! ```
//!
//! You can try to use more nuanced methods instead of scaling down and checking again. One method
//! may be to check the first collision point and scale down to the distance thereof.
//! Everything is iterator based.
//!
//! # TileView #
//! For drawing you may want to avoid sending huge grids to the GPU, so we use a view from the grid.
//!
//! ```
//! extern crate tile_net;
//! use tile_net::*;
//! fn main() {
//!   let mut net: TileNet<usize> = TileNet::new(10, 10);
//!   net.set_row(&1, 0);
//!   net.set_row(&2, 9);
//!   net.set_col(&3, 0);
//!   net.set_col(&4, 9);
//!   net.set_box(&5, (3, 3), (5, 7));
//!   println!["{:?}", net];
//!   // This creates a box with x from 0 to 4 and y from 3 to 6
//!   // Note that the last elements are not included (so for x: 0, 1, 2, 3, but not 4)
//!   for element in net.view_box((0, 4, 3, 6)) {
//!     let (value, col, row) = element;
//!     // Draw here!
//!     println!["{}-{} = {}", row, col, value];
//!   }
//!   // This just prints every single element in the net
//!   for element in net.view_all() {
//!     let (value, col, row) = element;
//!     // Draw here!
//!     println!["{}-{} = {}", row, col, value];
//!   }
//!   // Looks from (0, 1) to (6, 5). This takes care of negative indices that may be created.
//!   // The first argument represents the center. The second argument is the span around that
//!   // center.
//!   for element in net.view_center((3, 3), (4, 2)) {
//!     let (value, col, row) = element;
//!     // Draw here!
//!     println!["{}-{} = {}", row, col, value];
//!   }
//!   // Same as `view_center` but allows floats for the first pair.
//!   // Makes sure that the left-most bound will always be 0.
//!   for element in net.view_center_f32((3.0, 3.0), (4, 2)) {
//!     let (value, col, row) = element;
//!     // Draw here!
//!     println!["{}-{} = {}", row, col, value];
//!   }
//! }
//! ```
//! # Ergonomics #
//! Instead of using a manual loop, you can use the built-in `solve`. Which calls `presolve`,
//! runs a loop around `resolve`, and then calls `postsolve` with bools denoting whether a
//! solution was found and at least a single collision was encountered.
//!
//! ```
//! extern crate tile_net;
//! use tile_net::*;
//!
//! fn main() {
//!   let mut net: TileNet<usize> = TileNet::new(10, 10);
//!   net.set_row(&1, 0);
//!   net.set_row(&2, 9);
//!   net.set_col(&3, 0);
//!   net.set_col(&4, 9);
//!   net.set_box(&5, (3, 3), (5, 7));
//!   println!["{:?}", net];
//!
//!   let mut collider = MyObject::new();
//!   collider.solve(&net, &mut ());  // Much simpler than the loop!
//!   println!["{:?}", collider];
//! }
//!
//! #[derive(Debug)]
//! struct MyObject {
//!   pts: Vec<(f32, f32)>,
//!   pos: Vector,
//!   mov: Vector,
//! }
//!
//! impl MyObject {
//!   fn new() -> MyObject {
//!     MyObject {
//!       pts: vec![(0.0, 0.0), (1.0, 0.0), (0.0, 1.0), (1.0, 1.0)],
//!       pos: Vector(1.1, 1.1),
//!       mov: Vector(100.0, 100.0),
//!     }
//!   }
//!
//! }
//!
//! impl Collable<usize, ()> for MyObject {
//!   fn points<'a>(&'a self) -> Points<'a> {
//!     Points::new(self.pos, &self.pts)
//!   }
//!
//!   fn queued(&self) -> Vector {
//!     self.mov
//!   }
//!
//!   fn postsolve(&mut self, _collided_once: bool, resolved: bool, _state: &mut ()) {
//!     if resolved {
//!       println!["Able to move"];
//!     } else {
//!       println!["Unable to move"];
//!     }
//!   }
//!
//!   fn resolve<'a, I>(&mut self, mut set: TileSet<'a, usize, I>, _state: &mut ()) -> bool
//!     where I: Iterator<Item = (i32, i32)>
//!   {
//!     if set.all(|x| *x == 0) {  // If there is no collision (we only collide with non-zero tiles)
//!       self.pos = self.pos + self.mov;
//!       self.mov = Vector(0.0, 0.0);
//!       true  // Means we resolved correctly
//!     } else if self.mov.norm2sq() > 1e-6 {  // There was collision, but our speed isn't tiny
//!       self.mov.scale(0.9);
//!       false  // Means we did not resolve collision
//!     } else {
//!       true
//!     }
//!   }
//! }
//! ```
//! # State #
//! You may have seen the `state` variables in `presolve`, `solve`, and `postsolve`.
//! You can put arbitrary information in this variable. It allows you to communicate between
//! the three stages and outside of the `solve` call.
//!
//! State is appropriate whenever there exists a property that is not supposed to be part of
//! the `Collable` that you are implementing. In addition to making your `Collable` cleaner,
//! you also avoid redundant information stored in your objects.
//!
//! See the examples directory for an example where we use presolve and postsolve
//! to find out if our object can jump or not.


#[macro_use(interleave)]
extern crate interleave;

mod collable;
mod defs;
mod tiles;

pub use defs::{SuperCover, Line, Vector};
pub use collable::{Collable, Points};
pub use tiles::{TileNet, TileNetProxy, TileView, TileSet};

#[cfg(test)]
mod tests {
	use super::TileNet;

	#[test]
	fn get() {
		let map: TileNet<usize> = TileNet::new(10, 10);
		assert_eq!(Some(&0), map.get((9, 9)));
		assert_eq!(None, map.get((10, 9)));
		assert_eq!(None, map.get((9, 10)));
	}

	#[test]
	fn get_mut() {
		let mut map: TileNet<usize> = TileNet::new(10, 10);
		*map.get_mut((9, 9)).unwrap() = 10;
		assert_eq!(Some(&10), map.get((9, 9)));
		*map.get_mut((9, 9)).unwrap() = 1;
		assert_eq!(Some(&1), map.get((9, 9)));
	}

	#[test]
	fn get_size() {
		let map: TileNet<usize> = TileNet::new(10, 10);
		assert_eq!((10, 10), map.get_size());
		let map: TileNet<usize> = TileNet::new(483, 194);
		assert_eq!((483, 194), map.get_size());
	}

	#[test]
	fn resize() {
		let mut map: TileNet<usize> = TileNet::new(10, 10);
		*map.get_mut((0, 0)).unwrap() = 0;
		map.resize((5, 5));
		map.resize((10, 10));
	}

	#[test]
	fn from_iter_and_view_box() {
		let map: TileNet<usize> = TileNet::from_iter(10, (1..101));
		let mut view = map.view_box((3, 8, 1, 4));
		(14usize..19)
			.chain((24..29))
			.chain((34..39))
			.map(|x| assert_eq!(view.next().unwrap().0, &x))
			.count();
	}

	#[test]
	fn from_iter_with_remainder() {
		let map: TileNet<usize> = TileNet::from_iter(10, (1..25));
		let mut view = map.view_box((0, 10, 0, 3));
		for x in (1..31).map(|x| if x >= 25 { 0 } else { x }) {
			assert_eq!(view.next().unwrap().0, &x);
		}

		let map: TileNet<usize> = TileNet::from_iter(10, (1..31));
		let mut view = map.view_box((0, 10, 0, 3));
		for x in 1..31 {
			assert_eq!(view.next().unwrap().0, &x);
		}
	}

	#[test]
	fn collide_set() {
		let map: TileNet<usize> = TileNet::from_iter(10,
		                                             (1..101).map(|x| if x > 50 { x } else { 0 }));
		let mut set = map.collide_set((3..7).map(|x| (4, x)));
		for _ in 1..3 {
			assert_eq!(set.next().unwrap(), &0);
		}
		for x in 0..2 {
			assert_eq!(set.next().unwrap(), &(55 + 10 * x));
		}
	}

	#[test]
	fn get_coords() {
		let map = TileNet::sample();
		let mut set = map.collide_set((3..7).map(|x| (4, x)));
		for _ in 0..2 {
			let _ = set.next();
		}
		assert_eq!(set.get_coords(), (4, 4));
	}

}