1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Bindings for jemalloc as an allocator
//!
//! This crate provides bindings to jemalloc as a memory allocator for Rust.
//! This crate mainly exports, one type, `Jemalloc`, which implements the
//! `GlobalAlloc` trait and optionally the `Alloc` trait,
//! and is suitable both as a memory allocator and as a global allocator.

#![cfg_attr(feature = "alloc_trait", feature(allocator_api))]
#![deny(missing_docs, broken_intra_doc_links)]
#![no_std]

#[cfg(feature = "alloc_trait")]
use core::alloc::{Alloc, AllocErr, CannotReallocInPlace, Excess};
use core::alloc::{GlobalAlloc, Layout};
#[cfg(feature = "alloc_trait")]
use core::ptr::NonNull;

use libc::{c_int, c_void};

// This constant equals _Alignof(max_align_t) and is platform-specific. It
// contains the _maximum_ alignment that the memory allocations returned by the
// C standard library memory allocation APIs (e.g. `malloc`) are guaranteed to
// have.
//
// The memory allocation APIs are required to return memory that can fit any
// object whose fundamental aligment is <= _Alignof(max_align_t).
//
// In C, there are no ZSTs, and the size of all types is a multiple of their
// alignment (size >= align). So for allocations with size <=
// _Alignof(max_align_t), the malloc-APIs return memory whose alignment is
// either the requested size if its a power-of-two, or the next smaller
// power-of-two.
#[cfg(all(any(
    target_arch = "arm",
    target_arch = "mips",
    target_arch = "mipsel",
    target_arch = "powerpc"
)))]
const ALIGNOF_MAX_ALIGN_T: usize = 8;
#[cfg(all(any(
    target_arch = "x86",
    target_arch = "x86_64",
    target_arch = "aarch64",
    target_arch = "powerpc64",
    target_arch = "powerpc64le",
    target_arch = "mips64",
    target_arch = "s390x",
    target_arch = "sparc64"
)))]
const ALIGNOF_MAX_ALIGN_T: usize = 16;

/// If `align` is less than `_Alignof(max_align_t)`, and if the requested
/// allocation `size` is larger than the alignment, we are guaranteed to get a
/// suitably aligned allocation by default, without passing extra flags, and
/// this function returns `0`.
///
/// Otherwise, it returns the alignment flag to pass to the jemalloc APIs.
fn layout_to_flags(align: usize, size: usize) -> c_int {
    if align <= ALIGNOF_MAX_ALIGN_T && align <= size {
        0
    } else {
        ffi::MALLOCX_ALIGN(align)
    }
}

// Assumes a condition that always must hold.
macro_rules! assume {
    ($e:expr) => {
        debug_assert!($e);
        if !($e) {
            core::hint::unreachable_unchecked();
        }
    };
}

/// Handle to the jemalloc allocator
///
/// This type implements the `GlobalAllocAlloc` trait, allowing usage a global allocator.
///
/// When the `alloc_trait` feature of this crate is enabled, it also implements the `Alloc` trait,
/// allowing usage in collections.
#[derive(Copy, Clone, Default, Debug)]
pub struct Jemalloc;

unsafe impl GlobalAlloc for Jemalloc {
    #[inline]
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        assume!(layout.size() != 0);
        let flags = layout_to_flags(layout.align(), layout.size());
        let ptr = if flags == 0 {
            ffi::malloc(layout.size())
        } else {
            ffi::mallocx(layout.size(), flags)
        };
        ptr as *mut u8
    }

    #[inline]
    unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 {
        assume!(layout.size() != 0);
        let flags = layout_to_flags(layout.align(), layout.size());
        let ptr = if flags == 0 {
            ffi::calloc(1, layout.size())
        } else {
            ffi::mallocx(layout.size(), flags | ffi::MALLOCX_ZERO)
        };
        ptr as *mut u8
    }

    #[inline]
    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        assume!(!ptr.is_null());
        assume!(layout.size() != 0);
        let flags = layout_to_flags(layout.align(), layout.size());
        ffi::sdallocx(ptr as *mut c_void, layout.size(), flags)
    }

    #[inline]
    unsafe fn realloc(&self, ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 {
        assume!(layout.size() != 0);
        assume!(new_size != 0);
        let flags = layout_to_flags(layout.align(), new_size);
        let ptr = if flags == 0 {
            ffi::realloc(ptr as *mut c_void, new_size)
        } else {
            ffi::rallocx(ptr as *mut c_void, new_size, flags)
        };
        ptr as *mut u8
    }
}

#[cfg(feature = "alloc_trait")]
unsafe impl Alloc for Jemalloc {
    #[inline]
    unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
        NonNull::new(GlobalAlloc::alloc(self, layout)).ok_or(AllocErr)
    }

    #[inline]
    unsafe fn alloc_zeroed(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
        NonNull::new(GlobalAlloc::alloc_zeroed(self, layout)).ok_or(AllocErr)
    }

    #[inline]
    unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
        GlobalAlloc::dealloc(self, ptr.as_ptr(), layout)
    }

    #[inline]
    unsafe fn realloc(
        &mut self,
        ptr: NonNull<u8>,
        layout: Layout,
        new_size: usize,
    ) -> Result<NonNull<u8>, AllocErr> {
        NonNull::new(GlobalAlloc::realloc(self, ptr.as_ptr(), layout, new_size)).ok_or(AllocErr)
    }

    #[inline]
    unsafe fn alloc_excess(&mut self, layout: Layout) -> Result<Excess, AllocErr> {
        let flags = layout_to_flags(layout.align(), layout.size());
        let ptr = ffi::mallocx(layout.size(), flags);
        if let Some(nonnull) = NonNull::new(ptr as *mut u8) {
            let excess = ffi::nallocx(layout.size(), flags);
            Ok(Excess(nonnull, excess))
        } else {
            Err(AllocErr)
        }
    }

    #[inline]
    unsafe fn realloc_excess(
        &mut self,
        ptr: NonNull<u8>,
        layout: Layout,
        new_size: usize,
    ) -> Result<Excess, AllocErr> {
        let flags = layout_to_flags(layout.align(), new_size);
        let ptr = ffi::rallocx(ptr.cast().as_ptr(), new_size, flags);
        if let Some(nonnull) = NonNull::new(ptr as *mut u8) {
            let excess = ffi::nallocx(new_size, flags);
            Ok(Excess(nonnull, excess))
        } else {
            Err(AllocErr)
        }
    }

    #[inline]
    fn usable_size(&self, layout: &Layout) -> (usize, usize) {
        let flags = layout_to_flags(layout.align(), layout.size());
        unsafe {
            let max = ffi::nallocx(layout.size(), flags);
            (layout.size(), max)
        }
    }

    #[inline]
    unsafe fn grow_in_place(
        &mut self,
        ptr: NonNull<u8>,
        layout: Layout,
        new_size: usize,
    ) -> Result<(), CannotReallocInPlace> {
        let flags = layout_to_flags(layout.align(), new_size);
        let usable_size = ffi::xallocx(ptr.cast().as_ptr(), new_size, 0, flags);
        if usable_size >= new_size {
            Ok(())
        } else {
            // `xallocx` returns a size smaller than the requested one to
            // indicate that the allocation could not be grown in place
            //
            // the old allocation remains unaltered
            Err(CannotReallocInPlace)
        }
    }

    #[inline]
    unsafe fn shrink_in_place(
        &mut self,
        ptr: NonNull<u8>,
        layout: Layout,
        new_size: usize,
    ) -> Result<(), CannotReallocInPlace> {
        if new_size == layout.size() {
            return Ok(());
        }
        let flags = layout_to_flags(layout.align(), new_size);
        let usable_size = ffi::xallocx(ptr.cast().as_ptr(), new_size, 0, flags);

        if usable_size < layout.size() {
            // If `usable_size` is smaller than the original size, the
            // size-class of the allocation was shrunk to the size-class of
            // `new_size`, and it is safe to deallocate the allocation with
            // `new_size`:
            Ok(())
        } else if usable_size == ffi::nallocx(new_size, flags) {
            // If the allocation was not shrunk and the size class of `new_size`
            // is the same as the size-class of `layout.size()`, then the
            // allocation can be properly deallocated using `new_size` (and also
            // using `layout.size()` because the allocation did not change)

            // note: when the allocation is not shrunk, `xallocx` returns the
            // usable size of the original allocation, which in this case matches
            // that of the requested allocation:
            debug_assert_eq!(
                ffi::nallocx(new_size, flags),
                ffi::nallocx(layout.size(), flags)
            );
            Ok(())
        } else {
            // If the allocation was not shrunk, but the size-class of
            // `new_size` is not the same as that of the original allocation,
            // then shrinking the allocation failed:
            Err(CannotReallocInPlace)
        }
    }
}

/// Return the usable size of the allocation pointed to by ptr.
///
/// The return value may be larger than the size that was requested during allocation.
/// This function is not a mechanism for in-place `realloc()`;
/// rather it is provided solely as a tool for introspection purposes.
/// Any discrepancy between the requested allocation size
/// and the size reported by this function should not be depended on,
/// since such behavior is entirely implementation-dependent.
///
/// # Unsafety
///
/// `ptr` must have been allocated by `Jemalloc` and must not have been freed yet.
pub unsafe fn usable_size<T>(ptr: *const T) -> usize {
    ffi::malloc_usable_size(ptr as *const c_void)
}

/// Raw bindings to jemalloc
mod ffi {
    pub use tikv_jemalloc_sys::*;
}