1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
use std::{
    borrow::Borrow,
    fmt::Debug,
    marker::PhantomData,
    ops::{Deref, Index},
};

use thiserror::Error;

#[derive(Error)]
#[error("Value supplied did not satisfy the type invariant")]
/// The result of a failed invariant check on construction. Contains the value
/// that failed to uphold the invariant.
pub struct ConstructionError<T>(pub T);
impl<T> Debug for ConstructionError<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ConstructionError").finish()
    }
}

/// The result of a failed invariant check at the end of mutation.
///
/// In the cases where it's recoverable, this error contains the value
/// that failed to uphold the invariant.
#[derive(Error)]
#[error("Value did not satisfy the type invariant after mutation")]
pub struct MutationError<T>(pub Option<T>);
impl<T> Debug for MutationError<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.write_str("MutationError")
    }
}

/// The result of a broken invariant at some unspecified point in the
/// past. This can only happen as a consequence of incorrect usage of
/// `unsafe` accessors enabled with the `unsafe_access` flag
#[cfg(feature = "unsafe_access")]
#[derive(Error, Debug)]
#[error("Invariant was broken at some point in the past")]
pub struct BrokenInvariantError;

/// Trait for an arbitrary condition that a bounded type must guarantee
/// to uphold at all times.
pub trait Bound {
    /// The type that the invariant is predicated on.
    type Target;
    /// The condition that the target type must verify at all times.
    fn check(target: &Self::Target) -> bool;
}

/// A bounded type, i.e. a thin wrapper around an inner type that guarantees a
/// specific invariant is always held. Generic over an inner type `T` and a
/// [`Bound`](Bound) that targets it.
///
/// Bounded types can be constructed directly or through the [`bound`](bound)
/// macro:
/// ```
/// // Defined directly
/// use tightness::{Bounded, Bound};
///
/// #[derive(Debug)]
/// pub struct LetterBound;
///
/// impl tightness::Bound for LetterBound {
///     type Target = char;
///     fn check(target: &char) -> bool { target.is_alphabetic() }
/// }
///
/// pub type Letter = tightness::Bounded<char, LetterBound>;
///
/// ```
///
/// ```
/// // Defined via macro
/// use tightness::{bound, Bounded};
/// bound!(pub Letter: char where |l| l.is_alphabetic());
/// ```
#[derive(Debug)]
pub struct Bounded<T, B: Bound<Target = T>>(T, PhantomData<B>);

impl<T, B: Bound<Target = T>> Bounded<T, B> {
    /// Fallible constructor. Will return an error if the argument `t`
    /// doesn't fulfill the conditions of the bound.
    ///
    /// ```
    /// # use tightness::{bound, Bounded, ConstructionError};
    /// bound!(Letter: char where |c| c.is_alphabetic());
    /// assert!(Letter::new('a').is_ok());
    /// assert!(matches!(Letter::new('5'), Err(ConstructionError('5'))));
    /// ```
    pub fn new(t: T) -> Result<Self, ConstructionError<T>> {
        if B::check(&t) {
            Ok(Self(t, Default::default()))
        } else {
            Err(ConstructionError(t))
        }
    }

    /// Will panic if the conditions of the bound don't hold after mutation.
    ///
    /// ```should_panic
    /// # use tightness::{bound, Bounded};
    /// bound!(Letter: char where |c| c.is_alphabetic());
    /// let mut letter = Letter::new('a').unwrap();
    /// letter.mutate(|l| *l = 'b');
    ///
    /// // Panics:
    /// letter.mutate(|l| *l = '5');
    /// ```
    pub fn mutate(&mut self, f: impl FnOnce(&mut T)) {
        f(&mut self.0);
        assert!(B::check(&self.0));
    }

    /// If the conditions of the bound don't hold after mutation, will restore to a given value.
    ///
    /// ```
    /// # use tightness::{bound, Bounded};
    /// bound!(Letter: char where |c| c.is_alphabetic());
    /// let mut letter = Letter::new('a').unwrap();
    /// let mut fallback = Letter::new('b').unwrap();
    ///
    /// letter.mutate_or(fallback, |l| *l = '5').unwrap_err();
    /// assert_eq!(*letter, 'b');
    /// ```
    pub fn mutate_or(
        &mut self,
        default: Self,
        f: impl FnOnce(&mut T),
    ) -> Result<(), MutationError<T>> {
        f(&mut self.0);
        if B::check(&self.0) {
            Ok(())
        } else {
            *self = default;
            Err(MutationError(None))
        }
    }

    /// The value is dropped if the conditions of the bound don't hold after mutation.
    /// ```
    /// # use tightness::{bound, Bounded, MutationError};
    /// bound!(Letter: char where |c| c.is_alphabetic());
    /// let mut letter = Letter::new('a').unwrap();
    ///
    /// let letter = letter.into_mutated(|l| *l = 'b').unwrap();
    /// let result = letter.into_mutated(|l| *l = '5');
    ///
    /// assert!(matches!(result, Err(MutationError(Some('5')))));
    /// ```
    pub fn into_mutated(mut self, f: impl FnOnce(&mut T)) -> Result<Self, MutationError<T>> {
        f(&mut self.0);
        if B::check(&self.0) {
            Ok(self)
        } else {
            Err(MutationError(Some(self.0)))
        }
    }

    /// Access the inner value through an immutable reference.
    pub fn get(&self) -> &T { &self.0 }

    /// Retrieve the inner, unprotected value.
    pub fn into_inner(self) -> T { self.0 }

    /// Invariant must be upheld manually!
    #[cfg(feature = "unsafe_access")]
    pub unsafe fn new_unchecked(t: T) -> Self { Self(t, Default::default()) }

    /// Invariant must be upheld manually!
    #[cfg(feature = "unsafe_access")]
    pub unsafe fn mutate_unchecked(&mut self, f: impl FnOnce(&mut T)) { f(&mut self.0) }

    /// Gives mutable access to the internals without upholding invariants.
    /// They must continue to be upheld manually while the reference lives!
    #[cfg(feature = "unsafe_access")]
    pub unsafe fn get_mut(&mut self) -> &mut T { &mut self.0 }

    /// Verifies invariants. This is guaranteed to succeed unless you've used
    /// one of the `unsafe` methods that require variants to be manually upheld.
    #[cfg(feature = "unsafe_access")]
    pub fn verify(&self) -> Result<(), BrokenInvariantError> {
        if B::check(&self.0) {
            Ok(())
        } else {
            Err(BrokenInvariantError)
        }
    }
}

impl<T: Clone, B: Bound<Target = T>> Bounded<T, B> {
    /// Preserves invariants after mutation, erroring out if the attempt to mutate was
    /// invalid. Requires a copy to ensure the value is recoverable.
    pub fn try_mutate(&mut self, f: impl FnOnce(&mut T)) -> Result<(), MutationError<T>> {
        let mut duplicate = self.0.clone();
        f(&mut duplicate);
        if B::check(&duplicate) {
            self.0 = duplicate;
            Ok(())
        } else {
            Err(MutationError(None))
        }
    }
}

impl<T: Clone, B: Bound<Target = T>> Clone for Bounded<T, B> {
    fn clone(&self) -> Self { Self(self.0.clone(), Default::default()) }
}

impl<T, B: Bound<Target = T>> Borrow<T> for Bounded<T, B> {
    fn borrow(&self) -> &T { &self.0 }
}

impl<T, B: Bound<Target = T>> AsRef<T> for Bounded<T, B> {
    fn as_ref(&self) -> &T { &self.0 }
}

impl<T, B: Bound<Target = T>> Deref for Bounded<T, B> {
    type Target = T;
    fn deref(&self) -> &Self::Target { &self.0 }
}

impl<T: PartialEq, B: Bound<Target = T>> PartialEq for Bounded<T, B> {
    fn eq(&self, other: &Self) -> bool { self.0.eq(&other.0) }
}

impl<T: Eq, B: Bound<Target = T>> Eq for Bounded<T, B> {}

impl<T: PartialOrd, B: Bound<Target = T>> PartialOrd for Bounded<T, B> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        self.0.partial_cmp(&other.0)
    }
}

impl<T: Ord, B: Bound<Target = T>> Ord for Bounded<T, B> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering { self.0.cmp(&other.0) }
}

impl<T: Copy, B: Bound<Target = T>> Copy for Bounded<T, B> {}
impl<T: core::hash::Hash, B: Bound<Target = T>> core::hash::Hash for Bounded<T, B> {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) { self.0.hash(state) }
}

impl<T: Index<U>, U, B: Bound<Target = T>> Index<U> for Bounded<T, B> {
    type Output = T::Output;

    fn index(&self, index: U) -> &Self::Output { self.0.index(index) }
}

#[cfg(test)]
mod tests {
    #[derive(Debug)]
    struct IsPositive;
    impl Bound for IsPositive {
        type Target = i32;
        fn check(x: &i32) -> bool { *x >= 0 }
    }

    use super::*;
    #[test]
    fn constructing_with_passing_bounds_succeeds() { Bounded::<i32, IsPositive>::new(1).unwrap(); }

    #[test]
    fn constructing_with_failing_bounds_fails() {
        assert!(Bounded::<i32, IsPositive>::new(-5).is_err());
    }

    #[test]
    fn mutating_with_passing_bounds_succeeds() {
        let mut bounded = Bounded::<i32, IsPositive>::new(5i32).unwrap();
        bounded.mutate(|i| *i = 2 * *i);
    }

    #[test]
    #[should_panic]
    fn mutating_with_failing_bounds_panics() {
        let mut bounded = Bounded::<i32, IsPositive>::new(5i32).unwrap();
        bounded.mutate(|i| *i = -5);
    }
}