1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
use {Error, ErrorKind};
use std;
use thrussh::key;
use super::{Encryption, pkcs_unpad};
use yasna;
use yasna::BERReaderSeq;
use openssl::symm::{encrypt, decrypt, Cipher};
use openssl::hash::MessageDigest;
use openssl::rand::rand_bytes;
use bit_vec::BitVec;
use std::borrow::Cow;
use thrussh::key::SignatureHash;
use thrussh;

const PBES2: &'static [u64] = &[1, 2, 840, 113549, 1, 5, 13];
const PBKDF2: &'static [u64] = &[1, 2, 840, 113549, 1, 5, 12];
const HMAC_SHA256: &'static [u64] = &[1, 2, 840, 113549, 2, 9];
const AES256CBC: &'static [u64] = &[2, 16, 840, 1, 101, 3, 4, 1, 42];
const ED25519: &'static [u64] = &[1, 3, 101, 112];
const RSA: &'static [u64] = &[1, 2, 840, 113549, 1, 1, 1];

/// Decode a PKCS#8-encoded private key.
pub fn decode_pkcs8(
    ciphertext: &[u8],
    password: Option<&[u8]>,
) -> Result<key::Algorithm, Error> {
    let secret = if let Some(pass) = password {
        // let mut sec = Vec::new();
        Cow::Owned(yasna::parse_der(&ciphertext, |reader| {
            reader.read_sequence(|reader| {
                // Encryption parameters
                let parameters = reader.next().read_sequence(|reader| {
                    let oid = reader.next().read_oid()?;
                    if oid.components().as_slice() == PBES2 {
                        asn1_read_pbes2(reader)
                    } else {
                        Ok(Err(ErrorKind::UnknownAlgorithm(oid).into()))
                    }
                })?;
                // Ciphertext
                let ciphertext = reader.next().read_bytes()?;
                Ok(parameters.map(|p| p.decrypt(pass, &ciphertext)))
            })
        })???)
    } else {
        Cow::Borrowed(ciphertext)
    };
    yasna::parse_der(&secret, |reader| {
        reader.read_sequence(|reader| {
            let version = reader.next().read_u64()?;
            if version == 0 {
                Ok(read_key_v0(reader))
            } else if version == 1 {
                Ok(read_key_v1(reader))
            } else {
                Ok(Err(ErrorKind::CouldNotReadKey.into()))
            }
        })
    })?
}


fn asn1_read_pbes2(
    reader: &mut yasna::BERReaderSeq,
) -> Result<Result<Algorithms, Error>, yasna::ASN1Error> {
    reader.next().read_sequence(|reader| {
        // PBES2 has two components.
        // 1. Key generation algorithm
        let keygen = reader.next().read_sequence(|reader| {
            let oid = reader.next().read_oid()?;
            if oid.components().as_slice() == PBKDF2 {
                asn1_read_pbkdf2(reader)
            } else {
                Ok(Err(ErrorKind::UnknownAlgorithm(oid).into()))
            }
        })?;
        // 2. Encryption algorithm.
        let algorithm = reader.next().read_sequence(|reader| {
            let oid = reader.next().read_oid()?;
            if oid.components().as_slice() == AES256CBC {
                asn1_read_aes256cbc(reader)
            } else {
                Ok(Err(ErrorKind::UnknownAlgorithm(oid).into()))
            }
        })?;
        Ok(keygen.and_then(|keygen| {
            algorithm.map(|algo| Algorithms::Pbes2(keygen, algo))
        }))
    })
}

fn asn1_read_pbkdf2(
    reader: &mut yasna::BERReaderSeq,
) -> Result<Result<KeyDerivation, Error>, yasna::ASN1Error> {
    reader.next().read_sequence(|reader| {
        let salt = reader.next().read_bytes()?;
        let rounds = reader.next().read_u64()?;
        let digest = reader.next().read_sequence(|reader| {
            let oid = reader.next().read_oid()?;
            if oid.components().as_slice() == HMAC_SHA256 {
                reader.next().read_null()?;
                Ok(Ok(MessageDigest::sha256()))
            } else {
                Ok(Err(ErrorKind::UnknownAlgorithm(oid).into()))
            }
        })?;
        Ok(digest.map(|digest| {
            KeyDerivation::Pbkdf2 {
                salt,
                rounds,
                digest,
            }
        }))
    })
}

fn asn1_read_aes256cbc(
    reader: &mut yasna::BERReaderSeq,
) -> Result<Result<Encryption, Error>, yasna::ASN1Error> {
    let iv = reader.next().read_bytes()?;
    let mut i = [0; 16];
    i.clone_from_slice(&iv);
    Ok(Ok(Encryption::Aes256Cbc(i)))
}

fn write_key_v1(writer: &mut yasna::DERWriterSeq,
                secret: &thrussh::key::ed25519::SecretKey) {

    writer.next().write_u32(1);
    // write OID
    writer.next().write_sequence(|writer| {
        writer.next().write_oid(&ObjectIdentifier::from_slice(ED25519));
    });
    let seed = yasna::construct_der(|writer| writer.write_bytes(&secret.key));
    writer.next().write_bytes(&seed);
    writer.next().write_tagged(yasna::Tag::context(1), |writer| {
        let public = &secret.key[32..];
        writer.write_bitvec(&BitVec::from_bytes(&public))
    })
}

fn read_key_v1(reader: &mut BERReaderSeq) -> Result<key::Algorithm, Error> {
    let oid = reader.next().read_sequence(|reader| {
        reader.next().read_oid()
    })?;
    debug!("oid {:?}", oid.components().as_slice());
    if oid.components().as_slice() == ED25519 {
        use thrussh::key::ed25519::{PublicKey, SecretKey};
        let secret = {
            let mut seed = SecretKey::new_zeroed();
            let s = yasna::parse_der(&reader.next().read_bytes()?, |reader| {
                reader.read_bytes()
            })?;
            clone(&s, &mut seed.key);
            seed
        };
        let _public = {
            let public = reader.next().read_tagged(yasna::Tag::context(1), |reader| {
                reader.read_bitvec()
            })?.to_bytes();
            debug!("public {:?}", public);
            let mut p = PublicKey::new_zeroed();
            clone(&public, &mut p.key);
            p
        };
        Ok(key::Algorithm::Ed25519(secret))
    } else {
        Err(ErrorKind::CouldNotReadKey.into())
    }
}

use openssl::rsa::Rsa;
fn write_key_v0(writer: &mut yasna::DERWriterSeq, key: &Rsa) {
    writer.next().write_u32(0);
    // write OID
    writer.next().write_sequence(|writer| {
        writer.next().write_oid(&ObjectIdentifier::from_slice(RSA));
        writer.next().write_null()
    });
    let bytes = yasna::construct_der(|writer| {
        writer.write_sequence(|writer| {
            writer.next().write_u32(0);
            use num_bigint::BigUint;
            writer.next().write_biguint(&BigUint::from_bytes_be(&key.n().unwrap().to_vec()));
            writer.next().write_biguint(&BigUint::from_bytes_be(&key.e().unwrap().to_vec()));
            writer.next().write_biguint(&BigUint::from_bytes_be(&key.d().unwrap().to_vec()));
            writer.next().write_biguint(&BigUint::from_bytes_be(&key.p().unwrap().to_vec()));
            writer.next().write_biguint(&BigUint::from_bytes_be(&key.q().unwrap().to_vec()));
            writer.next().write_biguint(&BigUint::from_bytes_be(&key.dp().unwrap().to_vec()));
            writer.next().write_biguint(&BigUint::from_bytes_be(&key.dq().unwrap().to_vec()));
            writer.next().write_biguint(&BigUint::from_bytes_be(&key.qi().unwrap().to_vec()));
        })
    });
    writer.next().write_bytes(&bytes);
}

fn read_key_v0(reader: &mut BERReaderSeq) -> Result<key::Algorithm, Error> {
    let oid = reader.next().read_sequence(|reader| {
        let oid = reader.next().read_oid()?;
        reader.next().read_null()?;
        Ok(oid)
    })?;
    if oid.components().as_slice() == RSA {
        let seq = &reader.next().read_bytes()?;
        let rsa: Result<Rsa, Error> = yasna::parse_der(seq, |reader| {
            reader.read_sequence(|reader| {
                let version = reader.next().read_u32()?;
                if version != 0 {
                    return Ok(Err(ErrorKind::CouldNotReadKey.into()))
                }
                use openssl::bn::BigNum;
                use openssl::rsa::Rsa;
                let mut read_key = || -> Result<Rsa, Error> {
                    Ok(Rsa::from_private_components (
                        BigNum::from_slice(&reader.next().read_biguint()?.to_bytes_be())?,
                        BigNum::from_slice(&reader.next().read_biguint()?.to_bytes_be())?,
                        BigNum::from_slice(&reader.next().read_biguint()?.to_bytes_be())?,
                        BigNum::from_slice(&reader.next().read_biguint()?.to_bytes_be())?,
                        BigNum::from_slice(&reader.next().read_biguint()?.to_bytes_be())?,
                        BigNum::from_slice(&reader.next().read_biguint()?.to_bytes_be())?,
                        BigNum::from_slice(&reader.next().read_biguint()?.to_bytes_be())?,
                        BigNum::from_slice(&reader.next().read_biguint()?.to_bytes_be())?,
                    )?)
                };
                Ok(read_key())
            })
        })?;
        Ok(key::Algorithm::RSA { key: rsa?, hash: SignatureHash::SHA2_256 })
    } else {
        Err(ErrorKind::CouldNotReadKey.into())
    }
}


#[cfg(test)]
use env_logger;

#[test]
fn test_read_write_pkcs8() {
    env_logger::init().unwrap_or(());
    let (public, secret) = thrussh::key::ed25519::keypair();
    assert_eq!(&public.key, &secret.key[32..]);
    let key = key::Algorithm::Ed25519(secret);
    let password = b"blabla";
    let ciphertext = encode_pkcs8_encrypted(password, 100, &key).unwrap();
    let key = decode_pkcs8(&ciphertext, Some(password)).unwrap();
    match key {
        key::Algorithm::Ed25519 { .. } => debug!("Ed25519"),
        key::Algorithm::RSA { .. } => debug!("RSA"),
    }
}


use yasna::models::ObjectIdentifier;
use openssl::pkcs5::pbkdf2_hmac;
/// Encode a password-protected PKCS#8-encoded private key.
pub fn encode_pkcs8_encrypted(
    pass: &[u8],
    rounds: u32,
    key: &key::Algorithm,
) -> Result<Vec<u8>, Error> {

    let mut salt = [0; 64];
    rand_bytes(&mut salt)?;
    let mut iv = [0; 16];
    rand_bytes(&mut iv)?;
    let mut dkey = [0; 32]; // AES256-CBC
    pbkdf2_hmac(pass, &salt, rounds as usize, MessageDigest::sha256(), &mut dkey)?;

    let mut plaintext = encode_pkcs8(key);

    let padding_len = 32 - (plaintext.len() % 32);
    plaintext.extend(std::iter::repeat(padding_len as u8).take(padding_len));


    let ciphertext = encrypt(Cipher::aes_256_cbc(), &dkey, Some(&iv), &plaintext)?;

    Ok(yasna::construct_der(|writer| {
        writer.write_sequence(|writer| {
            // Encryption parameters
            writer.next().write_sequence(|writer| {
                writer.next().write_oid(&ObjectIdentifier::from_slice(PBES2));
                asn1_write_pbes2(writer.next(), rounds as u64, &salt, &iv)
            });
            // Ciphertext
            writer.next().write_bytes(&ciphertext[..])
        })
    }))
}

/// Encode a Decode a PKCS#8-encoded private key.
pub fn encode_pkcs8(key: &key::Algorithm) -> Vec<u8> {
    yasna::construct_der(|writer| {
        writer.write_sequence(|writer| {
            match *key {
                key::Algorithm::Ed25519(ref secret) => write_key_v1(writer, secret),
                key::Algorithm::RSA { ref key, .. } => write_key_v0(writer, key),
            }
        })
    })
}

fn clone(src: &[u8], dest: &mut [u8]) {
    debug!("src {:?}, dest {:?}", src, dest);
    let i = src.iter().take_while(|b| **b == 0).count();
    let src = &src[i..];
    let l = dest.len();
    (&mut dest[l - src.len()..]).clone_from_slice(src)
}



fn asn1_write_pbes2(writer: yasna::DERWriter, rounds: u64, salt: &[u8], iv: &[u8]) {
    writer.write_sequence(|writer| {
        // 1. Key generation algorithm
        writer.next().write_sequence(|writer| {
            writer.next().write_oid(&ObjectIdentifier::from_slice(PBKDF2));
            asn1_write_pbkdf2(writer.next(), rounds, salt)
        });
        // 2. Encryption algorithm.
        writer.next().write_sequence(|writer| {
            writer.next().write_oid(&ObjectIdentifier::from_slice(AES256CBC));
            writer.next().write_bytes(iv)
        });
    })
}

fn asn1_write_pbkdf2(writer: yasna::DERWriter, rounds: u64, salt: &[u8]) {
    writer.write_sequence(|writer| {
        writer.next().write_bytes(salt);
        writer.next().write_u64(rounds);
        writer.next().write_sequence(|writer| {
            writer.next().write_oid(&ObjectIdentifier::from_slice(HMAC_SHA256));
            writer.next().write_null()
        })
    })
}






enum Algorithms {
    Pbes2(KeyDerivation, Encryption),
}

impl Algorithms {
    fn decrypt(&self, password: &[u8], cipher: &[u8]) -> Result<Vec<u8>, Error> {
        match *self {
            Algorithms::Pbes2(ref der, ref enc) => {
                let mut key = enc.key();
                der.derive(password, &mut key)?;
                let out = enc.decrypt(&key, cipher)?;
                Ok(out)
            }
        }
    }
}

impl KeyDerivation {
    fn derive(&self, password: &[u8], key: &mut [u8]) -> Result<(), Error> {
        match *self {
            KeyDerivation::Pbkdf2 {
                ref salt,
                rounds,
                digest,
            } => pbkdf2_hmac(password, salt, rounds as usize, digest, key)?,
        }
        Ok(())
    }
}

enum Key {
    K128([u8; 16]),
    K256([u8; 32]),
}

impl std::ops::Deref for Key {
    type Target = [u8];
    fn deref(&self) -> &[u8] {
        match *self {
            Key::K128(ref k) => k,
            Key::K256(ref k) => k,
        }
    }
}

impl std::ops::DerefMut for Key {
    fn deref_mut(&mut self) -> &mut [u8] {
        match *self {
            Key::K128(ref mut k) => k,
            Key::K256(ref mut k) => k,
        }
    }
}

impl Encryption {
    fn key(&self) -> Key {
        match *self {
            Encryption::Aes128Cbc(_) => Key::K128([0; 16]),
            Encryption::Aes256Cbc(_) => Key::K256([0; 32]),
        }
    }

    fn decrypt(&self, key: &[u8], ciphertext: &[u8]) -> Result<Vec<u8>, Error> {
        let (cipher, iv) = match *self {
            Encryption::Aes128Cbc(ref iv) => (Cipher::aes_128_cbc(), iv),
            Encryption::Aes256Cbc(ref iv) => (Cipher::aes_256_cbc(), iv),
        };
        let mut dec = decrypt(
            cipher,
            &key,
            Some(&iv[..]),
            ciphertext
        )?;
        pkcs_unpad(&mut dec);
        Ok(dec)
    }
}

enum KeyDerivation {
    Pbkdf2 {
        salt: Vec<u8>,
        rounds: u64,
        digest: MessageDigest,
    },
}