1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
//! A pairing-based threshold cryptosystem for collaborative decryption and signatures.

// Clippy warns that it's dangerous to derive `PartialEq` and explicitly implement `Hash`, but the
// `pairing::bls12_381` types don't implement `Hash`, so we can't derive it.
#![allow(clippy::derive_hash_xor_eq)]
// When using the mocktography, the resulting field elements become wrapped `u32`s, suddenly
// triggering pass-by-reference warnings. They are conditionally disabled for this reason:
#![cfg_attr(
    feature = "use-insecure-test-only-mock-crypto",
    allow(clippy::trivially_copy_pass_by_ref)
)]
#![warn(missing_docs)]

pub use pairing;

mod cmp_pairing;
mod into_fr;
mod secret;

pub mod error;
pub mod poly;
pub mod serde_impl;

use std::cmp::Ordering;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ptr::copy_nonoverlapping;

use hex_fmt::HexFmt;
use log::debug;
use pairing::{CurveAffine, CurveProjective, EncodedPoint, Engine, Field};
use rand::distributions::{Distribution, Standard};
use rand::{rngs::OsRng, Rng, SeedableRng};
use rand04_compat::RngExt;
use rand_chacha::ChaChaRng;
use serde::{Deserialize, Serialize};
use tiny_keccak::sha3_256;

use crate::cmp_pairing::cmp_projective;
use crate::error::{Error, FromBytesError, FromBytesResult, Result};
use crate::poly::{Commitment, Poly};
use crate::secret::{clear_fr, ContainsSecret, MemRange, FR_SIZE};

pub use crate::into_fr::IntoFr;

#[cfg(not(feature = "use-insecure-test-only-mock-crypto"))]
pub use pairing::bls12_381::{Bls12 as PEngine, Fr, FrRepr, G1Affine, G2Affine, G1, G2};

#[cfg(feature = "use-insecure-test-only-mock-crypto")]
mod mock;

#[cfg(feature = "use-insecure-test-only-mock-crypto")]
pub use crate::mock::{
    Mersenne8 as Fr, Mersenne8 as FrRepr, Mocktography as PEngine, Ms8Affine as G1Affine,
    Ms8Affine as G2Affine, Ms8Projective as G1, Ms8Projective as G2, PK_SIZE, SIG_SIZE,
};

/// The size of a key's representation in bytes.
#[cfg(not(feature = "use-insecure-test-only-mock-crypto"))]
pub const PK_SIZE: usize = 48;

/// The size of a signature's representation in bytes.
#[cfg(not(feature = "use-insecure-test-only-mock-crypto"))]
pub const SIG_SIZE: usize = 96;

const ERR_OS_RNG: &str = "could not initialize the OS random number generator";

/// A public key.
#[derive(Deserialize, Serialize, Copy, Clone, PartialEq, Eq)]
pub struct PublicKey(#[serde(with = "serde_impl::projective")] G1);

impl Hash for PublicKey {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.into_affine().into_compressed().as_ref().hash(state);
    }
}

impl fmt::Debug for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let uncomp = self.0.into_affine().into_uncompressed();
        write!(f, "PublicKey({:0.10})", HexFmt(uncomp))
    }
}

impl PartialOrd for PublicKey {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

impl Ord for PublicKey {
    fn cmp(&self, other: &Self) -> Ordering {
        cmp_projective(&self.0, &other.0)
    }
}

impl PublicKey {
    /// Returns `true` if the signature matches the element of `G2`.
    pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &Signature, hash: H) -> bool {
        PEngine::pairing(self.0, hash) == PEngine::pairing(G1Affine::one(), sig.0)
    }

    /// Returns `true` if the signature matches the message.
    ///
    /// This is equivalent to `verify_g2(sig, hash_g2(msg))`.
    pub fn verify<M: AsRef<[u8]>>(&self, sig: &Signature, msg: M) -> bool {
        self.verify_g2(sig, hash_g2(msg))
    }

    /// Encrypts the message using the OS random number generator.
    ///
    /// Uses the `OsRng` by default. To pass in a custom random number generator, use
    /// `encrypt_with_rng()`.
    pub fn encrypt<M: AsRef<[u8]>>(&self, msg: M) -> Ciphertext {
        self.encrypt_with_rng(&mut OsRng::new().expect(ERR_OS_RNG), msg)
    }

    /// Encrypts the message.
    pub fn encrypt_with_rng<R: Rng, M: AsRef<[u8]>>(&self, rng: &mut R, msg: M) -> Ciphertext {
        let r: Fr = rng.gen04();
        let u = G1Affine::one().mul(r);
        let v: Vec<u8> = {
            let g = self.0.into_affine().mul(r);
            xor_with_hash(g, msg.as_ref())
        };
        let w = hash_g1_g2(u, &v).into_affine().mul(r);
        Ciphertext(u, v, w)
    }

    /// Returns the key with the given representation, if valid.
    pub fn from_bytes<B: Borrow<[u8; PK_SIZE]>>(bytes: B) -> FromBytesResult<Self> {
        let mut compressed: <G1Affine as CurveAffine>::Compressed = EncodedPoint::empty();
        compressed.as_mut().copy_from_slice(bytes.borrow());
        let opt_affine = compressed.into_affine().ok();
        let projective = opt_affine.ok_or(FromBytesError::Invalid)?.into_projective();
        Ok(PublicKey(projective))
    }

    /// Returns a byte string representation of the public key.
    pub fn to_bytes(&self) -> [u8; PK_SIZE] {
        let mut bytes = [0u8; PK_SIZE];
        bytes.copy_from_slice(self.0.into_affine().into_compressed().as_ref());
        bytes
    }
}

/// A public key share.
#[derive(Deserialize, Serialize, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
pub struct PublicKeyShare(PublicKey);

impl fmt::Debug for PublicKeyShare {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let uncomp = (self.0).0.into_affine().into_uncompressed();
        write!(f, "PublicKeyShare({:0.10})", HexFmt(uncomp))
    }
}

impl PublicKeyShare {
    /// Returns `true` if the signature matches the element of `G2`.
    pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &SignatureShare, hash: H) -> bool {
        self.0.verify_g2(&sig.0, hash)
    }

    /// Returns `true` if the signature matches the message.
    ///
    /// This is equivalent to `verify_g2(sig, hash_g2(msg))`.
    pub fn verify<M: AsRef<[u8]>>(&self, sig: &SignatureShare, msg: M) -> bool {
        self.verify_g2(sig, hash_g2(msg))
    }

    /// Returns `true` if the decryption share matches the ciphertext.
    pub fn verify_decryption_share(&self, share: &DecryptionShare, ct: &Ciphertext) -> bool {
        let Ciphertext(ref u, ref v, ref w) = *ct;
        let hash = hash_g1_g2(*u, v);
        PEngine::pairing(share.0, hash) == PEngine::pairing((self.0).0, *w)
    }

    /// Returns the key share with the given representation, if valid.
    pub fn from_bytes<B: Borrow<[u8; PK_SIZE]>>(bytes: B) -> FromBytesResult<Self> {
        Ok(PublicKeyShare(PublicKey::from_bytes(bytes)?))
    }

    /// Returns a byte string representation of the public key share.
    pub fn to_bytes(&self) -> [u8; PK_SIZE] {
        self.0.to_bytes()
    }
}

/// A signature.
// Note: Random signatures can be generated for testing.
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq)]
pub struct Signature(#[serde(with = "serde_impl::projective")] G2);

impl PartialOrd for Signature {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

impl Ord for Signature {
    fn cmp(&self, other: &Self) -> Ordering {
        cmp_projective(&self.0, &other.0)
    }
}

impl Distribution<Signature> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Signature {
        Signature(rng.gen04())
    }
}

impl fmt::Debug for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let uncomp = self.0.into_affine().into_uncompressed();
        write!(f, "Signature({:0.10})", HexFmt(uncomp))
    }
}

impl Hash for Signature {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.into_affine().into_compressed().as_ref().hash(state);
    }
}

impl Signature {
    /// Returns `true` if the signature contains an odd number of ones.
    pub fn parity(&self) -> bool {
        let uncomp = self.0.into_affine().into_uncompressed();
        let xor_bytes: u8 = uncomp.as_ref().iter().fold(0, |result, byte| result ^ byte);
        let parity = 0 != xor_bytes.count_ones() % 2;
        debug!("Signature: {:0.10}, parity: {}", HexFmt(uncomp), parity);
        parity
    }

    /// Returns the signature with the given representation, if valid.
    pub fn from_bytes<B: Borrow<[u8; SIG_SIZE]>>(bytes: B) -> FromBytesResult<Self> {
        let mut compressed: <G2Affine as CurveAffine>::Compressed = EncodedPoint::empty();
        compressed.as_mut().copy_from_slice(bytes.borrow());
        let opt_affine = compressed.into_affine().ok();
        let projective = opt_affine.ok_or(FromBytesError::Invalid)?.into_projective();
        Ok(Signature(projective))
    }

    /// Returns a byte string representation of the signature.
    pub fn to_bytes(&self) -> [u8; SIG_SIZE] {
        let mut bytes = [0u8; SIG_SIZE];
        bytes.copy_from_slice(self.0.into_affine().into_compressed().as_ref());
        bytes
    }
}

/// A signature share.
// Note: Random signature shares can be generated for testing.
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Hash, Ord, PartialOrd)]
pub struct SignatureShare(pub Signature);

impl Distribution<SignatureShare> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> SignatureShare {
        SignatureShare(rng.gen())
    }
}

impl fmt::Debug for SignatureShare {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let uncomp = (self.0).0.into_affine().into_uncompressed();
        write!(f, "SignatureShare({:0.10})", HexFmt(uncomp))
    }
}

impl SignatureShare {
    /// Returns the signature share with the given representation, if valid.
    pub fn from_bytes<B: Borrow<[u8; SIG_SIZE]>>(bytes: B) -> FromBytesResult<Self> {
        Ok(SignatureShare(Signature::from_bytes(bytes)?))
    }

    /// Returns a byte string representation of the signature share.
    pub fn to_bytes(&self) -> [u8; SIG_SIZE] {
        self.0.to_bytes()
    }
}

/// A secret key; wraps a single prime field element. The field element is
/// heap allocated to avoid any stack copying that result when passing
/// `SecretKey`s between stack frames.
///
/// # Serde integration
/// `SecretKey` implements `Deserialize` but not `Serialize` to avoid accidental
/// serialization in insecure contexts. To enable both use the `::serde_impl::SerdeSecret`
/// wrapper which implements both `Deserialize` and `Serialize`.
#[derive(PartialEq, Eq)]
pub struct SecretKey(Box<Fr>);

/// Creates a `SecretKey` containing the zero prime field element.
impl Default for SecretKey {
    fn default() -> Self {
        let mut fr = Fr::zero();
        SecretKey::from_mut(&mut fr)
    }
}

impl Distribution<SecretKey> for Standard {
    /// Creates a new random instance of `SecretKey`. If you do not need to specify your own RNG,
    /// you should use the [`SecretKey::random()`](struct.SecretKey.html#method.random) constructor,
    /// which uses [`rand::thread_rng()`](https://docs.rs/rand/0.6.1/rand/fn.thread_rng.html)
    /// internally as its RNG.
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> SecretKey {
        SecretKey(Box::new(rng.gen04()))
    }
}

/// Creates a new `SecretKey` by cloning another `SecretKey`'s prime field element.
impl Clone for SecretKey {
    fn clone(&self) -> Self {
        let mut fr = *self.0;
        SecretKey::from_mut(&mut fr)
    }
}

/// Zeroes out the memory allocated from the `SecretKey`'s field element.
impl Drop for SecretKey {
    fn drop(&mut self) {
        self.zero_secret();
    }
}
/// A debug statement where the secret prime field element is redacted.
impl fmt::Debug for SecretKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("SecretKey").field(&"...").finish()
    }
}

impl ContainsSecret for SecretKey {
    fn secret_memory(&self) -> MemRange {
        MemRange {
            ptr: &*self.0 as *const Fr as *mut u8,
            n_bytes: FR_SIZE,
        }
    }
}

impl SecretKey {
    /// Creates a new `SecretKey` from a mutable reference to a field element. This constructor
    /// takes a reference to avoid any unnecessary stack copying/moving of secrets (i.e. the field
    /// element). The field element is copied bytewise onto the heap, the resulting `Box` is
    /// stored in the returned `SecretKey`.
    ///
    /// *WARNING* this constructor will overwrite the referenced `Fr` element with zeros after it
    /// has been copied onto the heap.
    pub fn from_mut(fr: &mut Fr) -> Self {
        let fr_ptr = fr as *mut Fr;
        let mut boxed_fr = Box::new(Fr::zero());
        unsafe {
            copy_nonoverlapping(fr_ptr, &mut *boxed_fr as *mut Fr, 1);
        }
        clear_fr(fr_ptr);
        SecretKey(boxed_fr)
    }

    /// Creates a new random instance of `SecretKey`. If you want to use/define your own random
    /// number generator, you should use the constructor:
    /// [`SecretKey::sample()`](struct.SecretKey.html#impl-Distribution<SecretKey>). If you do not
    /// need to specify your own RNG, you should use the
    /// [`SecretKey::random()`](struct.SecretKey.html#method.random) constructor, which uses
    /// [`rand::thread_rng()`](https://docs.rs/rand/0.6.1/rand/fn.thread_rng.html) internally as its
    /// RNG.
    pub fn random() -> Self {
        rand::random()
    }

    /// Returns the matching public key.
    pub fn public_key(&self) -> PublicKey {
        PublicKey(G1Affine::one().mul(*self.0))
    }

    /// Signs the given element of `G2`.
    pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> Signature {
        Signature(hash.into().mul(*self.0))
    }

    /// Signs the given message.
    ///
    /// This is equivalent to `sign_g2(hash_g2(msg))`.
    pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> Signature {
        self.sign_g2(hash_g2(msg))
    }

    /// Returns the decrypted text, or `None`, if the ciphertext isn't valid.
    pub fn decrypt(&self, ct: &Ciphertext) -> Option<Vec<u8>> {
        if !ct.verify() {
            return None;
        }
        let Ciphertext(ref u, ref v, _) = *ct;
        let g = u.into_affine().mul(*self.0);
        Some(xor_with_hash(g, v))
    }

    /// Generates a non-redacted debug string. This method differs from
    /// the `Debug` implementation in that it *does* leak the secret prime
    /// field element.
    pub fn reveal(&self) -> String {
        let uncomp = self.public_key().0.into_affine().into_uncompressed();
        format!("SecretKey({:0.10})", HexFmt(uncomp))
    }
}

/// A secret key share.
///
/// # Serde integration
/// `SecretKeyShare` implements `Deserialize` but not `Serialize` to avoid accidental
/// serialization in insecure contexts. To enable both use the `::serde_impl::SerdeSecret`
/// wrapper which implements both `Deserialize` and `Serialize`.
#[derive(Clone, PartialEq, Eq, Default)]
pub struct SecretKeyShare(SecretKey);

/// Can be used to create a new random instance of `SecretKeyShare`. This is only useful for testing
/// purposes as such a key has not been derived from a `SecretKeySet`.
impl Distribution<SecretKeyShare> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> SecretKeyShare {
        SecretKeyShare(rng.gen())
    }
}

impl fmt::Debug for SecretKeyShare {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("SecretKeyShare").field(&"...").finish()
    }
}

impl SecretKeyShare {
    /// Creates a new `SecretKeyShare` from a mutable reference to a field element. This
    /// constructor takes a reference to avoid any unnecessary stack copying/moving of secrets
    /// field elements. The field element will be copied bytewise onto the heap, the resulting
    /// `Box` is stored in the `SecretKey` which is then wrapped in a `SecretKeyShare`.
    ///
    /// *WARNING* this constructor will overwrite the pointed to `Fr` element with zeros once it
    /// has been copied into a new `SecretKeyShare`.
    pub fn from_mut(fr: &mut Fr) -> Self {
        SecretKeyShare(SecretKey::from_mut(fr))
    }

    /// Returns the matching public key share.
    pub fn public_key_share(&self) -> PublicKeyShare {
        PublicKeyShare(self.0.public_key())
    }

    /// Signs the given element of `G2`.
    pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> SignatureShare {
        SignatureShare(self.0.sign_g2(hash))
    }

    /// Signs the given message.
    pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> SignatureShare {
        SignatureShare(self.0.sign(msg))
    }

    /// Returns a decryption share, or `None`, if the ciphertext isn't valid.
    pub fn decrypt_share(&self, ct: &Ciphertext) -> Option<DecryptionShare> {
        if !ct.verify() {
            return None;
        }
        Some(self.decrypt_share_no_verify(ct))
    }

    /// Returns a decryption share, without validating the ciphertext.
    pub fn decrypt_share_no_verify(&self, ct: &Ciphertext) -> DecryptionShare {
        DecryptionShare(ct.0.into_affine().mul(*(self.0).0))
    }

    /// Generates a non-redacted debug string. This method differs from
    /// the `Debug` implementation in that it *does* leak the secret prime
    /// field element.
    pub fn reveal(&self) -> String {
        let uncomp = self.0.public_key().0.into_affine().into_uncompressed();
        format!("SecretKeyShare({:0.10})", HexFmt(uncomp))
    }
}

/// An encrypted message.
#[derive(Deserialize, Serialize, Debug, Clone, PartialEq, Eq)]
pub struct Ciphertext(
    #[serde(with = "serde_impl::projective")] G1,
    Vec<u8>,
    #[serde(with = "serde_impl::projective")] G2,
);

impl Hash for Ciphertext {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let Ciphertext(ref u, ref v, ref w) = *self;
        u.into_affine().into_compressed().as_ref().hash(state);
        v.hash(state);
        w.into_affine().into_compressed().as_ref().hash(state);
    }
}

impl PartialOrd for Ciphertext {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

impl Ord for Ciphertext {
    fn cmp(&self, other: &Self) -> Ordering {
        let Ciphertext(ref u0, ref v0, ref w0) = self;
        let Ciphertext(ref u1, ref v1, ref w1) = other;
        cmp_projective(u0, u1)
            .then(v0.cmp(v1))
            .then(cmp_projective(w0, w1))
    }
}

impl Ciphertext {
    /// Returns `true` if this is a valid ciphertext. This check is necessary to prevent
    /// chosen-ciphertext attacks.
    pub fn verify(&self) -> bool {
        let Ciphertext(ref u, ref v, ref w) = *self;
        let hash = hash_g1_g2(*u, v);
        PEngine::pairing(G1Affine::one(), *w) == PEngine::pairing(*u, hash)
    }
}

/// A decryption share. A threshold of decryption shares can be used to decrypt a message.
#[derive(Clone, Deserialize, Serialize, Debug, PartialEq, Eq)]
pub struct DecryptionShare(#[serde(with = "serde_impl::projective")] G1);

impl Distribution<DecryptionShare> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> DecryptionShare {
        DecryptionShare(rng.gen04())
    }
}

impl Hash for DecryptionShare {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.into_affine().into_compressed().as_ref().hash(state);
    }
}

/// A public key and an associated set of public key shares.
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq, Ord, PartialOrd)]
pub struct PublicKeySet {
    /// The coefficients of a polynomial whose value at `0` is the "master key", and value at
    /// `i + 1` is key share number `i`.
    commit: Commitment,
}

impl Hash for PublicKeySet {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.commit.hash(state);
    }
}

impl From<Commitment> for PublicKeySet {
    fn from(commit: Commitment) -> PublicKeySet {
        PublicKeySet { commit }
    }
}

impl PublicKeySet {
    /// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
    /// signature.
    pub fn threshold(&self) -> usize {
        self.commit.degree()
    }

    /// Returns the public key.
    pub fn public_key(&self) -> PublicKey {
        PublicKey(self.commit.coeff[0])
    }

    /// Returns the `i`-th public key share.
    pub fn public_key_share<T: IntoFr>(&self, i: T) -> PublicKeyShare {
        let value = self.commit.evaluate(into_fr_plus_1(i));
        PublicKeyShare(PublicKey(value))
    }

    /// Combines the shares into a signature that can be verified with the main public key.
    ///
    /// The validity of the shares is not checked: If one of them is invalid, the resulting
    /// signature also is. Only returns an error if there is a duplicate index or too few shares.
    ///
    /// Validity of signature shares should be checked beforehand, or validity of the result
    /// afterwards:
    ///
    /// ```
    /// # extern crate rand;
    /// #
    /// # use std::collections::BTreeMap;
    /// # use threshold_crypto::SecretKeySet;
    /// #
    /// let sk_set = SecretKeySet::random(3, &mut rand::thread_rng());
    /// let sk_shares: Vec<_> = (0..6).map(|i| sk_set.secret_key_share(i)).collect();
    /// let pk_set = sk_set.public_keys();
    /// let msg = "Happy birthday! If this is signed, at least four people remembered!";
    ///
    /// // Create four signature shares for the message.
    /// let sig_shares: BTreeMap<_, _> = (0..4).map(|i| (i, sk_shares[i].sign(msg))).collect();
    ///
    /// // Validate the signature shares.
    /// for (i, sig_share) in &sig_shares {
    ///     assert!(pk_set.public_key_share(*i).verify(sig_share, msg));
    /// }
    ///
    /// // Combine them to produce the main signature.
    /// let sig = pk_set.combine_signatures(&sig_shares).expect("not enough shares");
    ///
    /// // Validate the main signature. If the shares were valid, this can't fail.
    /// assert!(pk_set.public_key().verify(&sig, msg));
    /// ```
    pub fn combine_signatures<'a, T, I>(&self, shares: I) -> Result<Signature>
    where
        I: IntoIterator<Item = (T, &'a SignatureShare)>,
        T: IntoFr,
    {
        let samples = shares.into_iter().map(|(i, share)| (i, &(share.0).0));
        Ok(Signature(interpolate(self.commit.degree(), samples)?))
    }

    /// Combines the shares to decrypt the ciphertext.
    pub fn decrypt<'a, T, I>(&self, shares: I, ct: &Ciphertext) -> Result<Vec<u8>>
    where
        I: IntoIterator<Item = (T, &'a DecryptionShare)>,
        T: IntoFr,
    {
        let samples = shares.into_iter().map(|(i, share)| (i, &share.0));
        let g = interpolate(self.commit.degree(), samples)?;
        Ok(xor_with_hash(g, &ct.1))
    }
}

/// A secret key and an associated set of secret key shares.
pub struct SecretKeySet {
    /// The coefficients of a polynomial whose value at `0` is the "master key", and value at
    /// `i + 1` is key share number `i`.
    poly: Poly,
}

impl From<Poly> for SecretKeySet {
    fn from(poly: Poly) -> SecretKeySet {
        SecretKeySet { poly }
    }
}

impl SecretKeySet {
    /// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
    /// sign and decrypt. This constructor is identical to the `SecretKeySet::try_random()` in every
    /// way except that this constructor panics if the other returns an error.
    ///
    /// # Panic
    ///
    /// Panics if the `threshold` is too large for the coefficients to fit into a `Vec`.
    pub fn random<R: Rng>(threshold: usize, rng: &mut R) -> Self {
        SecretKeySet::try_random(threshold, rng)
            .unwrap_or_else(|e| panic!("Failed to create random `SecretKeySet`: {}", e))
    }

    /// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
    /// sign and decrypt. This constructor is identical to the `SecretKeySet::random()` in every
    /// way except that this constructor returns an `Err` where the `random` would panic.
    pub fn try_random<R: Rng>(threshold: usize, rng: &mut R) -> Result<Self> {
        Poly::try_random(threshold, rng).map(SecretKeySet::from)
    }

    /// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
    /// signature.
    pub fn threshold(&self) -> usize {
        self.poly.degree()
    }

    /// Returns the `i`-th secret key share.
    pub fn secret_key_share<T: IntoFr>(&self, i: T) -> SecretKeyShare {
        let mut fr = self.poly.evaluate(into_fr_plus_1(i));
        SecretKeyShare::from_mut(&mut fr)
    }

    /// Returns the corresponding public key set. That information can be shared publicly.
    pub fn public_keys(&self) -> PublicKeySet {
        PublicKeySet {
            commit: self.poly.commitment(),
        }
    }

    /// Returns the secret master key.
    #[cfg(test)]
    fn secret_key(&self) -> SecretKey {
        let mut fr = self.poly.evaluate(0);
        SecretKey::from_mut(&mut fr)
    }
}

/// Returns a hash of the given message in `G2`.
pub fn hash_g2<M: AsRef<[u8]>>(msg: M) -> G2 {
    let digest = sha3_256(msg.as_ref());
    ChaChaRng::from_seed(digest).gen04()
}

/// Returns a hash of the group element and message, in the second group.
fn hash_g1_g2<M: AsRef<[u8]>>(g1: G1, msg: M) -> G2 {
    // If the message is large, hash it, otherwise copy it.
    // TODO: Benchmark and optimize the threshold.
    let mut msg = if msg.as_ref().len() > 64 {
        sha3_256(msg.as_ref()).to_vec()
    } else {
        msg.as_ref().to_vec()
    };
    msg.extend(g1.into_affine().into_compressed().as_ref());
    hash_g2(&msg)
}

/// Returns the bitwise xor of `bytes` with a sequence of pseudorandom bytes determined by `g1`.
fn xor_with_hash(g1: G1, bytes: &[u8]) -> Vec<u8> {
    let digest = sha3_256(g1.into_affine().into_compressed().as_ref());
    let mut rng = ChaChaRng::from_seed(digest);
    let xor = |(a, b): (u8, &u8)| a ^ b;
    rng.sample_iter(&Standard).zip(bytes).map(xor).collect()
}

use std::borrow::Borrow;

/// Given a list of `t + 1` samples `(i - 1, f(i) * g)` for a polynomial `f` of degree `t`, and a
/// group generator `g`, returns `f(0) * g`.
fn interpolate<C, B, T, I>(t: usize, items: I) -> Result<C>
where
    C: CurveProjective<Scalar = Fr>,
    I: IntoIterator<Item = (T, B)>,
    T: IntoFr,
    B: Borrow<C>,
{
    let samples: Vec<_> = items
        .into_iter()
        .take(t + 1)
        .map(|(i, sample)| (into_fr_plus_1(i), sample))
        .collect();
    if samples.len() <= t {
        return Err(Error::NotEnoughShares);
    }

    if t == 0 {
        return Ok(*samples[0].1.borrow());
    }

    // Compute the products `x_prod[i]` of all but the `i`-th entry.
    let mut x_prod: Vec<C::Scalar> = Vec::with_capacity(t);
    let mut tmp = C::Scalar::one();
    x_prod.push(tmp);
    for (x, _) in samples.iter().take(t) {
        tmp.mul_assign(x);
        x_prod.push(tmp);
    }
    tmp = C::Scalar::one();
    for (i, (x, _)) in samples[1..].iter().enumerate().rev() {
        tmp.mul_assign(x);
        x_prod[i].mul_assign(&tmp);
    }

    let mut result = C::zero();
    for (mut l0, (x, sample)) in x_prod.into_iter().zip(&samples) {
        // Compute the value at 0 of the Lagrange polynomial that is `0` at the other data
        // points but `1` at `x`.
        let mut denom = C::Scalar::one();
        for (x0, _) in samples.iter().filter(|(x0, _)| x0 != x) {
            let mut diff = *x0;
            diff.sub_assign(x);
            denom.mul_assign(&diff);
        }
        l0.mul_assign(&denom.inverse().ok_or(Error::DuplicateEntry)?);
        result.add_assign(&sample.borrow().into_affine().mul(l0));
    }
    Ok(result)
}

fn into_fr_plus_1<I: IntoFr>(x: I) -> Fr {
    let mut result = Fr::one();
    result.add_assign(&x.into_fr());
    result
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::collections::BTreeMap;

    use rand::{self, distributions::Standard, random, Rng};
    use rand04_compat::rand04::random as random04;

    #[test]
    fn test_interpolate() {
        let mut rng = rand::thread_rng();
        for deg in 0..5 {
            println!("deg = {}", deg);
            let comm = Poly::random(deg, &mut rng).commitment();
            let mut values = Vec::new();
            let mut x = 0;
            for _ in 0..=deg {
                x += rng.gen_range(1, 5);
                values.push((x - 1, comm.evaluate(x)));
            }
            let actual = interpolate(deg, values).expect("wrong number of values");
            assert_eq!(comm.evaluate(0), actual);
        }
    }

    #[test]
    fn test_simple_sig() {
        let sk0 = SecretKey::random();
        let sk1 = SecretKey::random();
        let pk0 = sk0.public_key();
        let msg0 = b"Real news";
        let msg1 = b"Fake news";
        assert!(pk0.verify(&sk0.sign(msg0), msg0));
        assert!(!pk0.verify(&sk1.sign(msg0), msg0)); // Wrong key.
        assert!(!pk0.verify(&sk0.sign(msg1), msg0)); // Wrong message.
    }

    #[test]
    fn test_threshold_sig() {
        let mut rng = rand::thread_rng();
        let sk_set = SecretKeySet::random(3, &mut rng);
        let pk_set = sk_set.public_keys();
        let pk_master = pk_set.public_key();

        // Make sure the keys are different, and the first coefficient is the main key.
        assert_ne!(pk_master, pk_set.public_key_share(0).0);
        assert_ne!(pk_master, pk_set.public_key_share(1).0);
        assert_ne!(pk_master, pk_set.public_key_share(2).0);

        // Make sure we don't hand out the main secret key to anyone.
        let sk_master = sk_set.secret_key();
        let sk_share_0 = sk_set.secret_key_share(0).0;
        let sk_share_1 = sk_set.secret_key_share(1).0;
        let sk_share_2 = sk_set.secret_key_share(2).0;
        assert_ne!(sk_master, sk_share_0);
        assert_ne!(sk_master, sk_share_1);
        assert_ne!(sk_master, sk_share_2);

        let msg = "Totally real news";

        // The threshold is 3, so 4 signature shares will suffice to recreate the share.
        let sigs: BTreeMap<_, _> = [5, 8, 7, 10]
            .iter()
            .map(|&i| {
                let sig = sk_set.secret_key_share(i).sign(msg);
                (i, sig)
            })
            .collect();

        // Each of the shares is a valid signature matching its public key share.
        for (i, sig) in &sigs {
            assert!(pk_set.public_key_share(*i).verify(sig, msg));
        }

        // Combined, they produce a signature matching the main public key.
        let sig = pk_set.combine_signatures(&sigs).expect("signatures match");
        assert!(pk_set.public_key().verify(&sig, msg));

        // A different set of signatories produces the same signature.
        let sigs2: BTreeMap<_, _> = [42, 43, 44, 45]
            .iter()
            .map(|&i| {
                let sig = sk_set.secret_key_share(i).sign(msg);
                (i, sig)
            })
            .collect();
        let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match");
        assert_eq!(sig, sig2);
    }

    #[test]
    fn test_simple_enc() {
        let sk_bob: SecretKey = random();
        let sk_eve: SecretKey = random();
        let pk_bob = sk_bob.public_key();
        let msg = b"Muffins in the canteen today! Don't tell Eve!";
        let ciphertext = pk_bob.encrypt(&msg[..]);
        assert!(ciphertext.verify());

        // Bob can decrypt the message.
        let decrypted = sk_bob.decrypt(&ciphertext).expect("invalid ciphertext");
        assert_eq!(msg[..], decrypted[..]);

        // Eve can't.
        let decrypted_eve = sk_eve.decrypt(&ciphertext).expect("invalid ciphertext");
        assert_ne!(msg[..], decrypted_eve[..]);

        // Eve tries to trick Bob into decrypting `msg` xor `v`, but it doesn't validate.
        let Ciphertext(u, v, w) = ciphertext;
        let fake_ciphertext = Ciphertext(u, vec![0; v.len()], w);
        assert!(!fake_ciphertext.verify());
        assert_eq!(None, sk_bob.decrypt(&fake_ciphertext));
    }

    #[test]
    fn test_random_extreme_thresholds() {
        let mut rng = rand::thread_rng();
        let sks = SecretKeySet::random(0, &mut rng);
        assert_eq!(0, sks.threshold());
        assert!(SecretKeySet::try_random(usize::max_value(), &mut rng).is_err());
    }

    #[test]
    fn test_threshold_enc() {
        let mut rng = rand::thread_rng();
        let sk_set = SecretKeySet::random(3, &mut rng);
        let pk_set = sk_set.public_keys();
        let msg = b"Totally real news";
        let ciphertext = pk_set.public_key().encrypt(&msg[..]);

        // The threshold is 3, so 4 signature shares will suffice to decrypt.
        let shares: BTreeMap<_, _> = [5, 8, 7, 10]
            .iter()
            .map(|&i| {
                let dec_share = sk_set
                    .secret_key_share(i)
                    .decrypt_share(&ciphertext)
                    .expect("ciphertext is invalid");
                (i, dec_share)
            })
            .collect();

        // Each of the shares is valid matching its public key share.
        for (i, share) in &shares {
            pk_set
                .public_key_share(*i)
                .verify_decryption_share(share, &ciphertext);
        }

        // Combined, they can decrypt the message.
        let decrypted = pk_set
            .decrypt(&shares, &ciphertext)
            .expect("decryption shares match");
        assert_eq!(msg[..], decrypted[..]);
    }

    /// Some basic sanity checks for the `hash_g2` function.
    #[test]
    fn test_hash_g2() {
        let mut rng = rand::thread_rng();
        let msg: Vec<u8> = rng.sample_iter(&Standard).take(1000).collect();
        let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
        let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();

        assert_eq!(hash_g2(&msg), hash_g2(&msg));
        assert_ne!(hash_g2(&msg), hash_g2(&msg_end0));
        assert_ne!(hash_g2(&msg_end0), hash_g2(&msg_end1));
    }

    /// Some basic sanity checks for the `hash_g1_g2` function.
    #[test]
    fn test_hash_g1_g2() {
        let mut rng = rand::thread_rng();
        let msg: Vec<u8> = rng.sample_iter(&Standard).take(1000).collect();
        let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
        let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
        let g0 = random04();
        let g1 = random04();

        assert_eq!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg));
        assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg_end0));
        assert_ne!(hash_g1_g2(g0, &msg_end0), hash_g1_g2(g0, &msg_end1));
        assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g1, &msg));
    }

    /// Some basic sanity checks for the `hash_bytes` function.
    #[test]
    fn test_xor_with_hash() {
        let g0 = random04();
        let g1 = random04();
        let xwh = xor_with_hash;
        assert_eq!(xwh(g0, &[0; 5]), xwh(g0, &[0; 5]));
        assert_ne!(xwh(g0, &[0; 5]), xwh(g1, &[0; 5]));
        assert_eq!(5, xwh(g0, &[0; 5]).len());
        assert_eq!(6, xwh(g0, &[0; 6]).len());
        assert_eq!(20, xwh(g0, &[0; 20]).len());
    }

    #[test]
    fn test_from_to_bytes() {
        let sk: SecretKey = random();
        let sig = sk.sign("Please sign here: ______");
        let pk = sk.public_key();
        let pk2 = PublicKey::from_bytes(pk.to_bytes()).expect("invalid pk representation");
        assert_eq!(pk, pk2);
        let sig2 = Signature::from_bytes(sig.to_bytes()).expect("invalid sig representation");
        assert_eq!(sig, sig2);
    }

    #[test]
    fn test_serde() {
        use bincode;

        let sk: SecretKey = random();
        let sig = sk.sign("Please sign here: ______");
        let pk = sk.public_key();
        let ser_pk = bincode::serialize(&pk).expect("serialize public key");
        let deser_pk = bincode::deserialize(&ser_pk).expect("deserialize public key");
        assert_eq!(ser_pk.len(), PK_SIZE);
        assert_eq!(pk, deser_pk);
        let ser_sig = bincode::serialize(&sig).expect("serialize signature");
        let deser_sig = bincode::deserialize(&ser_sig).expect("deserialize signature");
        assert_eq!(ser_sig.len(), SIG_SIZE);
        assert_eq!(sig, deser_sig);
    }

    #[test]
    fn test_size() {
        assert_eq!(<G1Affine as CurveAffine>::Compressed::size(), PK_SIZE);
        assert_eq!(<G2Affine as CurveAffine>::Compressed::size(), SIG_SIZE);
    }
}