1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// Copyright (c) 2016 rust-threshold-secret-sharing developers
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

//! Various number theoretic utility functions used in the library.

/// Euclidean GCD implementation (recursive). The first member of the returned
/// triplet is the GCD of `a` and `b`.
pub fn gcd(a: i64, b: i64) -> (i64, i64, i64) {
    if b == 0 {
        (a, 1, 0)
    } else {
        let n = a / b;
        let c = a % b;
        let r = gcd(b, c);
        (r.0, r.2, r.1 - r.2 * n)
    }
}

#[test]
fn test_gcd() {
    assert_eq!(gcd(12, 16), (4, -1, 1));
}


/// Inverse of `k` in the *Zp* field defined by `prime`.
pub fn mod_inverse(k: i64, prime: i64) -> i64 {
    let k2 = k % prime;
    let r = if k2 < 0 {
        -gcd(prime, -k2).2
    } else {
        gcd(prime, k2).2
    };
    (prime + r) % prime
}

#[test]
fn test_mod_inverse() {
    assert_eq!(mod_inverse(3, 7), 5);
}


/// `x` to the power of `e` in the *Zp* field defined by `prime`.
pub fn mod_pow(mut x: i64, mut e: u32, prime: i64) -> i64 {
    let mut acc = 1;
    while e > 0 {
        if e % 2 == 0 {
            // even
            // no-op
        } else {
            // odd
            acc = (acc * x) % prime;
        }
        x = (x * x) % prime; // waste one of these by having it here but code is simpler (tiny bit)
        e = e >> 1;
    }
    acc
}

#[test]
fn test_mod_pow() {
    assert_eq!(mod_pow(2, 0, 17), 1);
    assert_eq!(mod_pow(2, 3, 17), 8);
    assert_eq!(mod_pow(2, 6, 17), 13);

    assert_eq!(mod_pow(-3, 0, 17), 1);
    assert_eq!(mod_pow(-3, 1, 17), -3);
    assert_eq!(mod_pow(-3, 15, 17), -6);
}


/// Compute the 2-radix FFT of `a_coef` in the *Zp* field defined by `prime`.
///
/// `omega` must be a `n`-th principal root of unity,
/// where `n` is the lenght of `a_coef` as well as a power of 2.
/// The result will contains the same number of elements.
#[allow(dead_code)]
pub fn fft2(a_coef: &[i64], omega: i64, prime: i64) -> Vec<i64> {
    use fields::Field;
    let zp = ::fields::montgomery::MontgomeryField32::new(prime as u32);

    let mut data = a_coef.iter().map(|&a| zp.from_i64(a)).collect::<Vec<_>>();
    ::fields::fft::fft2(&zp, &mut *data, zp.from_i64(omega));
    data.iter().map(|a| zp.to_i64(*a)).collect()
}

/// Inverse FFT for `fft2`.
pub fn fft2_inverse(a_point: &[i64], omega: i64, prime: i64) -> Vec<i64> {
    use fields::Field;
    let zp = ::fields::montgomery::MontgomeryField32::new(prime as u32);

    let mut data = a_point.iter().map(|&a| zp.from_i64(a)).collect::<Vec<_>>();
    ::fields::fft::fft2_inverse(&zp, &mut *data, zp.from_i64(omega));
    data.iter().map(|a| zp.to_i64(*a)).collect()
}

#[test]
fn test_fft2() {
    // field is Z_433 in which 354 is an 8th root of unity
    let prime = 433;
    let omega = 354;

    let a_coef = vec![1, 2, 3, 4, 5, 6, 7, 8];
    let a_point = fft2(&a_coef, omega, prime);
    assert_eq!(positivise(&a_point, prime),
               positivise(&[36, -130, -287, 3, -4, 422, 279, -311], prime))
}

#[test]
fn test_fft2_inverse() {
    // field is Z_433 in which 354 is an 8th root of unity
    let prime = 433;
    let omega = 354;

    let a_point = vec![36, -130, -287, 3, -4, 422, 279, -311];
    let a_coef = fft2_inverse(&a_point, omega, prime);
    assert_eq!(positivise(&a_coef, prime), vec![1, 2, 3, 4, 5, 6, 7, 8])
}

/// Compute the 3-radix FFT of `a_coef` in the *Zp* field defined by `prime`.
///
/// `omega` must be a `n`-th principal root of unity,
/// where `n` is the lenght of `a_coef` as well as a power of 3.
/// The result will contains the same number of elements.
pub fn fft3(a_coef: &[i64], omega: i64, prime: i64) -> Vec<i64> {
    use fields::Field;
    let zp = ::fields::montgomery::MontgomeryField32::new(prime as u32);

    let mut data = a_coef.iter().map(|&a| zp.from_i64(a)).collect::<Vec<_>>();
    ::fields::fft::fft3(&zp, &mut *data, zp.from_i64(omega));
    data.iter().map(|a| zp.to_i64(*a)).collect()
}

/// Inverse FFT for `fft3`.
#[allow(dead_code)]
pub fn fft3_inverse(a_point: &[i64], omega: i64, prime: i64) -> Vec<i64> {
    use fields::Field;
    let zp = ::fields::montgomery::MontgomeryField32::new(prime as u32);

    let mut data = a_point.iter().map(|&a| zp.from_i64(a)).collect::<Vec<_>>();
    ::fields::fft::fft3_inverse(&zp, &mut *data, zp.from_i64(omega));
    data.iter().map(|a| zp.to_i64(*a)).collect()
}

#[test]
fn test_fft3() {
    // field is Z_433 in which 150 is an 9th root of unity
    let prime = 433;
    let omega = 150;

    let a_coef = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
    let a_point = positivise(&fft3(&a_coef, omega, prime), prime);
    assert_eq!(a_point, vec![45, 404, 407, 266, 377, 47, 158, 17, 20])
}

#[test]
fn test_fft3_inverse() {
    // field is Z_433 in which 150 is an 9th root of unity
    let prime = 433;
    let omega = 150;

    let a_point = vec![45, 404, 407, 266, 377, 47, 158, 17, 20];
    let a_coef = positivise(&fft3_inverse(&a_point, omega, prime), prime);
    assert_eq!(a_coef, vec![1, 2, 3, 4, 5, 6, 7, 8, 9])
}

/// Performs a Lagrange interpolation in field Zp at the origin
/// for a polynomial defined by `points` and `values`.
///
/// `points` and `values` are expected to be two arrays of the same size, containing
/// respectively the evaluation points (x) and the value of the polynomial at those point (p(x)).
///
/// The result is the value of the polynomial at x=0. It is also its zero-degree coefficient.
///
/// This is obviously less general than `newton_interpolation_general` as we
/// only get a single value, but it is much faster.
pub fn lagrange_interpolation_at_zero(points: &[i64], values: &[i64], prime: i64) -> i64 {
    assert_eq!(points.len(), values.len());
    // Lagrange interpolation for point 0
    let mut acc = 0i64;
    for i in 0..values.len() {
        let xi = points[i];
        let yi = values[i];
        let mut num = 1i64;
        let mut denum = 1i64;
        for j in 0..values.len() {
            if j != i {
                let xj = points[j];
                num = (num * xj) % prime;
                denum = (denum * (xj - xi)) % prime;
            }
        }
        acc = (acc + yi * num * mod_inverse(denum, prime)) % prime;
    }
    acc
}

/// Holds together points and Newton-interpolated coefficients for fast evaluation.
pub struct NewtonPolynomial<'a> {
    points: &'a [i64],
    coefficients: Vec<i64>,
}


/// General case for Newton interpolation in field Zp.
///
/// Given enough `points` (x) and `values` (p(x)), find the coefficients for `p`.
pub fn newton_interpolation_general<'a>(points: &'a [i64],
                                        values: &[i64],
                                        prime: i64)
                                        -> NewtonPolynomial<'a> {
    let coefficients = compute_newton_coefficients(points, values, prime);
    NewtonPolynomial {
        points: points,
        coefficients: coefficients,
    }
}

#[test]
fn test_newton_interpolation_general() {
    let prime = 17;

    let poly = [1, 2, 3, 4];
    let points = vec![5, 6, 7, 8, 9];
    let values: Vec<i64> =
        points.iter().map(|&point| mod_evaluate_polynomial(&poly, point, prime)).collect();
    assert_eq!(values, vec![8, 16, 4, 13, 16]);

    let recovered_poly = newton_interpolation_general(&points, &values, prime);
    let recovered_values: Vec<i64> =
        points.iter().map(|&point| newton_evaluate(&recovered_poly, point, prime)).collect();
    assert_eq!(recovered_values, values);

    assert_eq!(newton_evaluate(&recovered_poly, 10, prime), 3);
    assert_eq!(newton_evaluate(&recovered_poly, 11, prime), -2);
    assert_eq!(newton_evaluate(&recovered_poly, 12, prime), 8);
}

pub fn newton_evaluate(poly: &NewtonPolynomial, point: i64, prime: i64) -> i64 {
    // compute Newton points
    let mut newton_points = vec![1];
    for i in 0..poly.points.len() - 1 {
        let diff = (point - poly.points[i]) % prime;
        let product = (newton_points[i] * diff) % prime;
        newton_points.push(product);
    }
    let ref newton_coefs = poly.coefficients;
    // sum up
    newton_coefs.iter()
        .zip(newton_points)
        .map(|(coef, point)| (coef * point) % prime)
        .fold(0, |a, b| (a + b) % prime)
}

fn compute_newton_coefficients(points: &[i64], values: &[i64], prime: i64) -> Vec<i64> {
    assert_eq!(points.len(), values.len());

    let mut store: Vec<(usize, usize, i64)> =
        values.iter().enumerate().map(|(index, &value)| (index, index, value)).collect();

    for j in 1..store.len() {
        for i in (j..store.len()).rev() {
            let index_lower = store[i - 1].0;
            let index_upper = store[i].1;

            let point_lower = points[index_lower];
            let point_upper = points[index_upper];
            let point_diff = (point_upper - point_lower) % prime;
            let point_diff_inverse = mod_inverse(point_diff, prime);

            let coef_lower = store[i - 1].2;
            let coef_upper = store[i].2;
            let coef_diff = (coef_upper - coef_lower) % prime;

            let fraction = (coef_diff * point_diff_inverse) % prime;

            store[i] = (index_lower, index_upper, fraction);
        }
    }

    store.iter().map(|&(_, _, v)| v).collect()
}

#[test]
fn test_compute_newton_coefficients() {
    let points = vec![5, 6, 7, 8, 9];
    let values = vec![8, 16, 4, 13, 16];
    let prime = 17;

    let coefficients = compute_newton_coefficients(&points, &values, prime);
    assert_eq!(coefficients, vec![8, 8, -10, 4, 0]);
}

/// Map `values` from `[-n/2, n/2)` to `[0, n)`.
pub fn positivise(values: &[i64], n: i64) -> Vec<i64> {
    values.iter()
        .map(|&value| if value < 0 { value + n } else { value })
        .collect()
}

// deprecated
// fn mod_evaluate_polynomial_naive(coefficients: &[i64], point: i64, prime: i64) -> i64 {
//     // evaluate naively
//     coefficients.iter()
//        .enumerate()
//        .map(|(deg, coef)| (coef * mod_pow(point, deg as u32, prime)) % prime)
//        .fold(0, |a, b| (a + b) % prime)
// }
//
// #[test]
// fn test_mod_evaluate_polynomial_naive() {
//     let poly = vec![1,2,3,4,5,6];
//     let point = 5;
//     let prime = 17;
//     assert_eq!(mod_evaluate_polynomial_naive(&poly, point, prime), 4);
// }

/// Evaluate polynomial given by `coefficients` at `point` in Zp using Horner's method.
pub fn mod_evaluate_polynomial(coefficients: &[i64], point: i64, prime: i64) -> i64 {
    // evaluate using Horner's rule
    //  - to combine with fold we consider the coefficients in reverse order
    let mut reversed_coefficients = coefficients.iter().rev();
    // manually split due to fold insisting on an initial value
    let head = *reversed_coefficients.next().unwrap();
    let tail = reversed_coefficients;
    tail.fold(head, |partial, coef| (partial * point + coef) % prime)
}

#[test]
fn test_mod_evaluate_polynomial() {
    let poly = vec![1, 2, 3, 4, 5, 6];
    let point = 5;
    let prime = 17;
    assert_eq!(mod_evaluate_polynomial(&poly, point, prime), 4);
}