1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! Structures for creating and storing geometric primitives.

use genmesh::{EmitTriangles, Triangulate, Vertex as GenVertex};
use genmesh::generators::{self, IndexedPolygon, SharedVertex};
use mint;

/// A collection of vertices, their normals, and faces that defines the
/// shape of a polyhedral object.
///
/// # Examples
///
/// Tetrahedron of unit height and base radius.
///
/// ```rust
/// # extern crate three;
/// # fn make_tetrahedron() -> three::Geometry {
/// use std::f32::consts::PI;
///
/// let vertices = vec![
///     [0.0, 1.0, 0.0].into(),
///     [0.0, 0.0, 1.0].into(),
///     [(2.0 * PI / 3.0).sin(), 0.0, (2.0 * PI / 3.0).cos()].into(),
///     [(4.0 * PI / 3.0).sin(), 0.0, (4.0 * PI / 3.0).cos()].into(),
/// ];
///
/// let faces = vec![
///     [0, 1, 2],
///     [0, 2, 3],
///     [0, 3, 1],
///     [1, 3, 2],
/// ];
///
/// three::Geometry {
///     faces,
///     base: three::Shape {
///         vertices,
///         .. three::Shape::default()
///     },
///     .. three::Geometry::default()
/// }
/// # }
/// # fn main() { let _ = make_tetrahedron(); }
/// ```
/// # Notes
///
/// * If any vertex normals, tangents, or texture co-ordinates are provided,
///   the number of entries in each array must match the number of entries
///   in `vertices`.
/// * If joints are provided, the number of entries in `joints.indices` must
///   match the number of entries in `joints.weights`.
#[derive(Clone, Debug, Default)]
pub struct Geometry {
    /// Idle shape of the geometry.
    pub base: Shape,
    /// Texture co-ordinates.
    pub tex_coords: Vec<mint::Point2<f32>>,
    /// Face indices.
    ///
    /// When omitted, the vertex order `[[0, 1, 2], [3, 4, 5], ...]` is
    /// assumed.
    pub faces: Vec<[u32; 3]>,
    /// Properties for vertex skinning.
    pub joints: Joints,
    /// A list of blend shapes.
    pub shapes: Vec<Shape>,
}

/// A geometry shape.
#[derive(Clone, Debug, Default)]
pub struct Shape {
    /// Vertices.
    pub vertices: Vec<mint::Point3<f32>>,
    /// Normals.
    pub normals: Vec<mint::Vector3<f32>>,
    /// Tangents.
    pub tangents: Vec<mint::Vector4<f32>>,
}

/// Properties for vertex skinning.
#[derive(Clone, Debug, Default)]
pub struct Joints {
    /// Joint indices, encoded as floats.
    pub indices: Vec<[i32; 4]>,
    /// Joint weights.
    pub weights: Vec<[f32; 4]>,
}

impl Geometry {
    /// Create `Geometry` from vector of vertices.
    ///
    /// # Examples
    ///
    /// Triangle in the XY plane.
    ///
    /// ```rust
    /// let vertices = vec![
    ///     [-0.5, -0.5, 0.0].into(),
    ///     [ 0.5, -0.5, 0.0].into(),
    ///     [ 0.5, -0.5, 0.0].into(),
    /// ];
    /// let geometry = three::Geometry::with_vertices(vertices);
    /// ```
    pub fn with_vertices(vertices: Vec<mint::Point3<f32>>) -> Self {
        Geometry {
            base: Shape {
                vertices,
                .. Shape::default()
            },
            .. Geometry::default()
        }
    }

    fn generate<P, G, Fpos, Fnor>(
        gen: G,
        fpos: Fpos,
        fnor: Fnor,
    ) -> Self
    where
        P: EmitTriangles<Vertex = usize>,
        G: IndexedPolygon<P> + SharedVertex<GenVertex>,
        Fpos: Fn(GenVertex) -> mint::Point3<f32>,
        Fnor: Fn(GenVertex) -> mint::Vector3<f32>,
    {
        Geometry {
            base: Shape {
                vertices: gen.shared_vertex_iter().map(fpos).collect(),
                normals: gen.shared_vertex_iter().map(fnor).collect(),
                .. Shape::default()
            },
            // TODO: Add similar functions for tangents and texture coords
            faces: gen.indexed_polygon_iter()
                .triangulate()
                .map(|t| [t.x as u32, t.y as u32, t.z as u32])
                .collect(),
            .. Geometry::default()
        }
    }

    /// Creates planar geometry in the XY plane.
    ///
    /// The `width` and `height` parameters specify the total length of the
    /// geometry along the X and Y axes respectively.
    ///
    /// # Examples
    ///
    /// Unit square in the XY plane, centered at the origin.
    ///
    /// ```rust
    /// # extern crate three;
    /// fn make_square() -> three::Geometry {
    ///     three::Geometry::plane(1.0, 1.0)
    /// }
    /// # fn main() { let _ = make_square(); }
    /// ```
    pub fn plane(
        width: f32,
        height: f32,
    ) -> Self {
        Self::generate(
            generators::Plane::new(),
            |GenVertex { pos, .. }| [pos.x * 0.5 * width, pos.y * 0.5 * height, 0.0].into(),
            |v| v.normal.into(),
        )
    }

    /// Creates cuboidal geometry.
    ///
    /// The `width`, `height`, and `depth` parameters specify the total length of
    /// the geometry along the X, Y, and Z axes respectively.
    ///
    /// # Examples
    ///
    /// Unit cube, centered at the origin.
    ///
    /// ```rust
    /// # extern crate three;
    /// fn make_cube() -> three::Geometry {
    ///     three::Geometry::cuboid(1.0, 1.0, 1.0)
    /// }
    /// # fn main() { let _ = make_cube(); }
    /// ```
    pub fn cuboid(
        width: f32,
        height: f32,
        depth: f32,
    ) -> Self {
        Self::generate(
            generators::Cube::new(),
            |GenVertex { pos, .. }| {
                [
                    pos.x * 0.5 * width,
                    pos.y * 0.5 * height,
                    pos.z * 0.5 * depth,
                ].into()
            },
            |v| v.normal.into(),
        )
    }

    /// Creates cylindrial geometry.
    ///
    /// # Examples
    ///
    /// Cylinder of unit height and radius, using 12 segments at each end.
    ///
    /// ```rust
    /// # extern crate three;
    /// fn make_cylinder() -> three::Geometry {
    ///     three::Geometry::cylinder(1.0, 1.0, 1.0, 12)
    /// }
    /// # fn main() { let _ = make_cylinder(); }
    /// ```
    ///
    /// Cone of unit height and unit radius at the bottom.
    ///
    /// ```rust
    /// # extern crate three;
    /// fn make_cone() -> three::Geometry {
    ///     three::Geometry::cylinder(0.0, 1.0, 1.0, 12)
    /// }
    /// # fn main() { let _ = make_cone(); }
    /// ```
    pub fn cylinder(
        radius_top: f32,
        radius_bottom: f32,
        height: f32,
        radius_segments: usize,
    ) -> Self {
        Self::generate(
            generators::Cylinder::new(radius_segments),
            //Three.js has height along the Y axis for some reason
            |GenVertex { pos, .. }| {
                let scale = (pos.z + 1.0) * 0.5 * radius_top + (1.0 - pos.z) * 0.5 * radius_bottom;
                [pos.y * scale, pos.z * 0.5 * height, pos.x * scale].into()
            },
            |GenVertex { normal, .. }| [normal.y, normal.z, normal.x].into(),
        )
    }

    /// Creates geometry for a sphere, using the UV method.
    ///
    /// * `equatorial_divisions` specifies the number of segments about
    ///    the sphere equator that lies in the XZ plane.
    /// * `meridional_segments` specifies the number of segments around
    ///    the sphere meridian that lies in the YZ plane.
    ///
    /// ```rust
    /// # extern crate three;
    /// fn make_sphere() -> three::Geometry {
    ///     three::Geometry::uv_sphere(1.0, 12, 12)
    /// }
    /// # fn main() { let _ = make_sphere(); }
    /// ```
    pub fn uv_sphere(
        radius: f32,
        equatorial_segments: usize,
        meridional_segments: usize,
    ) -> Self {
        Self::generate(
            generators::SphereUv::new(equatorial_segments, meridional_segments),
            |GenVertex { pos, .. }| [pos.x * radius, pos.y * radius, pos.z * radius].into(),
            |v| v.normal.into(),
        )
    }
}