1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
// Copyright 2018 Mohammad Rezaei.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Portions copyright The Rust Project Developers. Licensed under
// the MIT License.

//! # `ThinVec` a general `Vec` replacement in a single usize-sized pointer.
use std::{
    alloc::{self, Layout},
    mem, ptr, marker,
};
use std::fmt::{self};
use std::cmp;
use std::ops::Index;
use std::iter::FromIterator;
use std::ops::Deref;
use std::slice;
use std::slice::SliceIndex;
use std::ptr::NonNull;
use std::ops::DerefMut;
use std::ops::IndexMut;
use std::borrow::Cow;
use std::iter::FusedIterator;
use std::ops::RangeBounds;
use std::ops::Bound::*;
use std::borrow::Borrow;
use std::borrow::BorrowMut;
use std::num::NonZeroUsize;

/// A thin (usize) vector. Guaranteed to be a usize-sized smart pointer.
///
/// Rust's `std::collections::Vec` (`std::Vec` for short) is a triple-fat (3 x usize) pointer to the heap.
/// When `std::Vec` is on the stack, it works well. However, when `std::Vec` is used inside other data
/// structures, such as `Vec<Vec<_>>`, the triple fatness starts to become a problem. For example,
/// when a `Vec<Vec<_>>` has to resize, it needs to move 3 times as much memory.
///
/// `ThinVec` uses a single usize value as a smart pointer, making it attractive for building larger
/// data structures.
///
/// `ThinVec` is also null optimized, which makes an `Option<ThinVec<_>>` also usize-sized.
///
/// # Capacity and reallocation
///
/// The capacity of a vector is the amount of space allocated for any future
/// elements that will be added onto the vector. This is not to be confused with
/// the *length* of a vector, which specifies the number of actual elements
/// within the vector. If a vector's length exceeds its capacity, its capacity
/// will automatically be increased, but its elements will have to be
/// reallocated.
///
/// For example, a vector with capacity 10 and length 0 would be an empty vector
/// with space for 10 more elements. Pushing 10 or fewer elements onto the
/// vector will not change its capacity or cause reallocation to occur. However,
/// if the vector's length is increased to 11, it will have to reallocate, which
/// can be slow. For this reason, it is recommended to use [`ThinVec::with_capacity`]
/// whenever possible to specify how big the vector is expected to get.
///
/// # Usage Patterns
/// Aside from the simple single element methods, `push`, `pop`, `insert` and `remove`,
/// ThinVec, just as `std::Vec` has a large number of API's that can be a bit hard
/// to navigate, especially because it also dereferences to a slice, which has a massive
/// api count.
///
/// # Initialization Patterns
///
/// Fill a `ThinVec` with some clonable object:
///
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let v: ThinVec<i32> = thinvec![7; 42];
/// assert_eq!(42, v.len());
/// assert_eq!(7, v[0]);
/// assert_eq!(7, v[41]);
/// # }
/// ```
/// The macro just calls `ThinVec::from_elem(7, 42)`
/// which makes sure the vector is created with [`ThinVec::with_capacity`]
/// before filling it.
///
/// Fill a `ThinVec` with the result of some function:
///
/// ```
/// use thincollections::thin_vec::ThinVec;
/// let v : ThinVec<i32> = (0..42).map(|x| x+7).collect(); // x+7 is the example function here
/// assert_eq!(42, v.len());
/// assert_eq!(7, v[0]);
/// assert_eq!(48, v[41]);
/// ```
/// The above patterns is also useful for types that do funny stuff when cloned.
/// For example, when `ThinVec` is cloned, it only copies the values, not the capacity, so
/// trying to create a `ThinVec<ThinVec<_>>` with a given capacity for the inner vectors
/// should be done via a loop or as above, `collect`.
///
/// # Sorting
/// `ThinVec` can be sorted because a slice can be sorted and `ThinVec` derefs to slice.
/// To be sortable, the type inside the `ThinVec` must implement `cmp::Ord`.
/// Alternatively, the `sort_by` method can be used to specify a custom comparator.
///
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let mut v: ThinVec<i32> = thinvec![3, 1, 2, -1];
/// v.sort(); // the compiler turns this into: v.as_mut_slice().sort()
/// assert_eq!(-1, v[0]);
/// assert_eq!(3, v[3]);
/// # }
/// ```
///
/// Sorting floating point numbers is harder because they don't implement `cmp::Ord`.
/// This is because of the weird values in floats, most importantly `NaN`, which has
/// very odd semantics regarding equality (it's not equal to anything, not even itself).
/// We can use [`ThinVec::transmute`] to get around these issues.
///
/// ```
/// #[macro_use] extern crate thincollections;
/// extern crate ordered_float;
///
/// use thincollections::thin_vec::ThinVec;
/// use ordered_float::NotNan;
/// # fn main() {
/// let mut v: ThinVec<f32> = thinvec![3.0, 1.0, 2.0, -1.0];
/// unsafe {
///     let mut v_notnan: ThinVec<NotNan<f32>> = v.transmute();
///     v_notnan.sort();
///     let v: ThinVec<f32> = v_notnan.transmute();
///     assert_eq!(-1.0, v[0]);
///     assert_eq!(3.0, v[3]);
/// }
/// # }
/// ```
///
/// After sorting a `ThinVec`, you can then use `binary_search` to find stuff.
///
/// # Iteration
/// `ThinVec` "inherits" its iteration from slice. Iterating through `ThinVec` is far more
/// efficient compared to indexing operations.
///
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let v: ThinVec<i32> = thinvec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
/// let mut sum = 0;
/// for i in v.iter() { // i is a &i32, not i32 here.
///     sum += i; // the compiler turns this into sum += *i;
/// }
/// assert_eq!(55, sum);
/// # }
/// ```
/// Because `iter()` produces a Rust `Iterator`, which has a large API, many
/// things can be done in a functional style without the explicit loop:
///
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let v: ThinVec<i32> = thinvec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
/// assert_eq!(55, v.iter().fold(0, |sum, x| sum + x)); // same as the loop above
/// assert_eq!(550, v.iter().map(|x| x * 10).fold(0, |sum, x| sum + x));
/// assert_eq!([2, 4, 6, 8, 10], v.iter().filter(|x| *x & 1 == 0).cloned().collect::<ThinVec<i32>>().as_slice());
/// # }
/// ```
///
/// We can also iterate and mutate (in place):
///
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let mut v: ThinVec<i32> = thinvec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
/// for i in v.iter_mut() { // i is a &mut i32
///     *i = *i + 10; // i points inside the vector!
/// }
/// assert_eq!(11, v[0]);
/// assert_eq!(20, v[9]);
/// # }
/// ```
///
/// Finally, we can move the contents of the vector out using `into_iter()`
///
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let v: ThinVec<i32> = thinvec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
/// let mut sum = 0;
/// for i in v.into_iter() { // i is i32 here (not &i32).
///     sum += i;
/// }
/// // can't access v anymore here, it's been consumed.
/// assert_eq!(55, sum);
/// # }
/// ```
///
/// # Concatenation
///
/// Concatenating vectors to vectors requires understanding the ownership/copy sematics of Rust.
/// Vectors own their contents, so a simple concatenation using the [`ThinVec::append`]
/// will move the contents (leaving one of the vectors empty):
///
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let mut v: ThinVec<i32> = thinvec![10, 20, 30];
/// let mut v2: ThinVec<i32> = thinvec![40, 50, 60];
/// v.append(&mut v2); // we take a mutable reference, because we're about to empty out v2
/// assert_eq!(6, v.len());
/// assert_eq!(60, v[5]);
/// assert_eq!(0, v2.len());
/// # }
/// ```
///
/// Vectors can also be extended from clonable slices (and a vector derefs to a slice!).
/// We can use this to concatenate two vectors without emptying one out:
///
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let mut v: ThinVec<i32> = thinvec![10, 20, 30];
/// let v2: ThinVec<i32> = thinvec![40, 50, 60];
/// v.extend(&v2); // the compiler turns this into v2.as_slice();
/// assert_eq!(6, v.len());
/// assert_eq!(60, v[5]);
/// assert_eq!(3, v2.len());
/// # }
/// ```
///
/// We also use the same to concatenate a slice to a `ThinVec`:
///
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let mut v: ThinVec<i32> = thinvec![10, 20, 30];
/// let s: [i32; 3] = [40, 50, 60]; // s is an array
/// v.extend(&s); // &s is a slice, not an array
/// assert_eq!(6, v.len());
/// assert_eq!(60, v[5]);
/// assert_eq!(3, s.len());
/// # }
/// ```
///
/// # Splitting
///
/// You can split (and move the contents) of a vector into another vector:
/// ```
/// # #[macro_use] extern crate thincollections;
/// # use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let mut vec = thinvec![1,2,3];
/// let vec2 = vec.split_off(1);
/// assert_eq!(vec, [1]);
/// assert_eq!(vec2, [2, 3]);
/// # }
/// ```
///
/// You can also mutably borrow multiple parts of a vector using the `split_at_mut`
/// slice method:
/// ```
/// #[macro_use] extern crate thincollections;
/// use thincollections::thin_vec::ThinVec;
/// # fn main() {
/// let mut v = thinvec![1, 0, 3, 0, 5, 6];
/// // scoped to restrict the lifetime of the borrows
/// {
///     let (left, right) = v.split_at_mut(2);
///     assert!(left == [1, 0]);
///     assert!(right == [3, 0, 5, 6]);
///     left[1] = 2;
///     right[1] = 4;
/// }
/// assert!(v == [1, 2, 3, 4, 5, 6]);
/// # }
/// ```
///
///
pub struct ThinVec<T> {
    u: NonZeroUsize,
    _marker: marker::PhantomData<T>,
}

#[cfg(target_pointer_width = "64")]
const ZST_MASK: usize = 0x8000_0000_0000_0000;

#[cfg(target_pointer_width = "32")]
const ZST_MASK: usize = 0x8000_0000;

pub static DANGLE: usize = <usize>::max_value(); // it is impossible for alloc to return this value, as we require at least 2*usize space

impl<T> ThinVec<T> {
    /// Constructs a new, empty `ThinVec<T>`.
    ///
    /// The vector will not allocate until elements are pushed onto it.
    ///
    /// # Examples
    ///
    /// ```
    /// use thincollections::thin_vec::ThinVec;
    /// let mut vec: ThinVec<i32> = ThinVec::new();
    /// vec.push(17); // initial allocation
    /// vec.push(42);
    /// ```
    #[inline]
    pub fn new() -> ThinVec<T> {
        unsafe {
            if mem::size_of::<T>() == 0 { return ThinVec { u: NonZeroUsize::new_unchecked(ZST_MASK), _marker: marker::PhantomData }; }
            ThinVec { u: NonZeroUsize::new_unchecked(DANGLE), _marker: marker::PhantomData }
        }
    }

    /// Constructs a new, empty `ThinVec<T>` with the specified capacity.
    ///
    /// The vector will be able to hold exactly `capacity` elements without
    /// reallocating. If `capacity` is 0, the vector will not allocate.
    ///
    /// It is important to note that although the returned vector has the
    /// *capacity* specified, the vector will have a zero *length*. For an
    /// explanation of the difference between length and capacity, see
    /// *[Capacity and reallocation]*.
    ///
    /// [Capacity and reallocation]: #capacity-and-reallocation
    ///
    /// # Examples
    ///
    /// ```
    /// use thincollections::thin_vec::ThinVec;
    /// let mut vec = ThinVec::with_capacity(10);
    ///
    /// // The vector contains no items, even though it has capacity for more
    /// assert_eq!(vec.len(), 0);
    ///
    /// // These are all done without reallocating...
    /// for i in 0..10 {
    ///     vec.push(i);
    /// }
    ///
    /// // ...but this may make the vector reallocate
    /// vec.push(11);
    /// ```
    #[inline]
    pub fn with_capacity(capacity: usize) -> ThinVec<T> {
        if mem::size_of::<T>() == 0 { return ThinVec::new(); }
        if capacity == 0 {
            return <ThinVec<T>>::new();
        }
        let array = <ThinVec<T>>::allocate_array(capacity);
        unsafe {
            ThinVec { u: NonZeroUsize::new_unchecked(array as usize), _marker: marker::PhantomData }
        }
    }

    /// Returns the number of elements the vector can hold without
    /// reallocating.
    ///
    /// # Examples
    ///
    /// ```
    /// use thincollections::thin_vec::ThinVec;
    /// let vec: ThinVec<i32> = ThinVec::with_capacity(10);
    /// assert_eq!(vec.capacity(), 10);
    /// ```
    #[inline]
    pub fn capacity(&self) -> usize {
        if mem::size_of::<T>() == 0 { return <usize>::max_value(); }
        if self.u.get() == DANGLE { return 0; }
        unsafe {
            let len_ptr = self.u.get() as *mut usize;
            return *len_ptr.add(1);
        }
    }

    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the given `ThinVec<T>`. The collection may reserve more space to avoid
    /// frequent reallocations. After calling `reserve`, capacity will be
    /// greater than or equal to `self.len() + additional`. Does nothing if
    /// capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// use thincollections::thin_vec::ThinVec;
    /// let mut vec = ThinVec::new();
    /// vec.push(1);
    /// vec.reserve(10);
    /// assert!(vec.capacity() >= 11);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        if mem::size_of::<T>() == 0 { return; }
        let len = self.len();
        self.reserve_exact(cmp::max(len * 2, len + additional));
    }

    /// Reserves the minimum capacity for exactly `additional` more elements to
    /// be inserted in the given `ThinVec<T>`. After calling `reserve_exact`,
    /// capacity will be greater than or equal to `self.len() + additional`.
    /// Does nothing if the capacity is already sufficient.
    ///
    /// Note that when the stack storage capacity exceeds `self.len() + additional`,
    /// nothing is allocated on the heap and the capacity remains as the stack capacity.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// use thincollections::thin_vec::ThinVec;
    /// let mut vec = ThinVec::new();
    /// vec.push(1);
    /// vec.reserve_exact(10);
    /// assert_eq!(11, vec.capacity());
    /// ```
    pub fn reserve_exact(&mut self, additional: usize) {
        if mem::size_of::<T>() == 0 { return; }
        if self.u.get() == DANGLE {
            unsafe {
                self.u = NonZeroUsize::new_unchecked(<ThinVec<T>>::allocate_array(additional) as usize);
                return;
            }
        }
        let len = self.len();
        let remain = self.capacity() - len;
        if remain < additional {
            let len_ptr = self.u.get() as *mut usize;
            unsafe {
                self.realloc_heap(len_ptr, *len_ptr + additional);
            }
        }
    }

    /// Shrinks the capacity of the vector as much as possible.
    ///
    /// It will drop down as close as possible to the length but the allocator
    /// may still inform the vector that there is space for a few more elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use thincollections::thin_vec::ThinVec;
    /// let mut vec = ThinVec::with_capacity(10);
    /// vec.push(1);
    /// vec.push(2);
    /// vec.push(3);
    /// assert_eq!(vec.capacity(), 10);
    /// vec.shrink_to_fit();
    /// assert!(vec.capacity() < 10);
    /// assert!(vec.capacity() == 3);
    /// ```
    pub fn shrink_to_fit(&mut self) {
        if mem::size_of::<T>() == 0 { return; }
        if self.u.get() == DANGLE { return; }
        let len_ptr = self.u.get() as *mut usize;
        unsafe {
            self.realloc_heap(len_ptr, *len_ptr);
        }
    }

    /// Shortens the vector, keeping the first `len` elements and dropping
    /// the rest.
    ///
    /// If `len` is greater than the vector's current length, this has no
    /// effect.
    ///
    /// The [`drain`] method can emulate `truncate`, but causes the excess
    /// elements to be returned instead of dropped.
    ///
    /// Note that this method has no effect on the allocated capacity
    /// of the vector.
    ///
    /// # Examples
    ///
    /// Truncating a five element vector to two elements:
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1, 2, 3, 4, 5];
    /// vec.truncate(2);
    /// assert_eq!(2, vec.len());
    /// assert_eq!(1, vec[0]);
    /// assert_eq!(2, vec[1]);
    /// # }
    /// ```
    ///
    /// No truncation occurs when `len` is greater than the vector's current
    /// length:
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1, 2, 3];
    /// vec.truncate(8);
    /// assert_eq!(vec[..], [1, 2, 3]);
    /// # }
    /// ```
    ///
    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
    /// method.
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1, 2, 3];
    /// vec.truncate(0);
    /// assert_eq!(vec[..], []);
    /// # }
    /// ```
    ///
    /// [`clear`]: #method.clear
    /// [`drain`]: #method.drain
    pub fn truncate(&mut self, len: usize) {
        if mem::size_of::<T>() == 0 {
            unsafe {
                self.set_len(len);
                return;
            }
        }
        if self.u.get() == DANGLE { return; }
        unsafe {
            let len_ptr = self.u.get() as *mut usize;
            if *len_ptr > len {
                if mem::needs_drop::<T>() {
                    let mut cur = ((len_ptr as *mut u8).add(<ThinVec<T>>::header_bytes()) as *mut T).add(len);
                    let end = cur.add(*len_ptr - len);
                    while cur < end {
                        *len_ptr -= 1;
                        ptr::drop_in_place(cur);
                        cur = cur.add(1);
                    }
                } else {
                    *len_ptr = len;
                }
            }
        }
    }

    /// Extracts a slice containing the entire vector.
    ///
    /// Equivalent to `&s[..]`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// use std::io::{self, Write};
    /// let buffer = thinvec![1, 2, 3, 5, 8];
    /// io::sink().write(buffer.as_slice()).unwrap();
    /// # }
    /// ```
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        self
    }

    /// Extracts a mutable slice of the entire vector.
    ///
    /// Equivalent to `&mut s[..]`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// use std::io::{self, Read};
    /// let mut buffer = thinvec![0; 3];
    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
    /// # }
    /// ```
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        self
    }

    /// Removes an element from the vector and returns it.
    ///
    /// The removed element is replaced by the last element of the vector.
    ///
    /// This does not preserve ordering, but is O(1).
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut v = thinvec!["foo", "bar", "baz", "qux"];
    ///
    /// assert_eq!(v.swap_remove(1), "bar");
    /// assert_eq!(v[..], ["foo", "qux", "baz"]);
    ///
    /// assert_eq!(v.swap_remove(0), "foo");
    /// assert_eq!(v[..], ["baz", "qux"]);
    /// # }
    /// ```
    #[inline]
    pub fn swap_remove(&mut self, index: usize) -> T {
        if mem::size_of::<T>() == 0 {
            unsafe {
                let len = self.len() - 1;
                self.set_len(len);
                return ptr::read(1 as *const T);
            }
        }
        unsafe {
            // We replace self[index] with the last element. Note that if the
            // bounds check on hole succeeds there must be a last element (which
            // can be self[index] itself).
            if index < self.len() {
                let len_ptr = self.u.get() as *mut usize;
                *len_ptr -= 1;
                let ptr = len_ptr as *mut u8;
                <ThinVec<T>>::replace(ptr.add(<ThinVec<T>>::header_bytes()) as *mut T, *len_ptr, index)
            } else {
                panic!("index out of bounds! len: {}, index {}", self.len(), index);
            }
        }
    }

    /// Inserts an element at position `index` within the vector, shifting all
    /// elements after it to the right.
    ///
    /// # Panics
    ///
    /// Panics if `index > len`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1, 2, 3];
    /// vec.insert(1, 4);
    /// assert_eq!(vec, [1, 4, 2, 3]);
    /// vec.insert(4, 5);
    /// assert_eq!(vec, [1, 4, 2, 3, 5]);
    /// # }
    /// ```
    #[inline]
    pub fn insert(&mut self, index: usize, val: T) {
        if mem::size_of::<T>() == 0 {
            unsafe {
                let len = self.len();
                assert!(index <= len);
                self.set_len(len + 1);
                return;
            }
        }
        assert!(index <= self.len());
        self.possibly_grow_heap();
        unsafe {
            let len_ptr = self.u.get() as usize as *mut usize;
            let len = *len_ptr;
            // The spot to put the new value
            {
                let p = self.as_mut_ptr().offset(index as isize);
                // Shift everything over to make space. (Duplicating the
                // `index`th element into two consecutive places.)
                ptr::copy(p, p.offset(1), len - index);
                // Write it in, overwriting the first copy of the `index`th
                // element.
                ptr::write(p, val);
            }
            *len_ptr += 1;
        }
    }

    #[inline]
    fn replace(ptr: *mut T, src: usize, dst: usize) -> T {
        unsafe {
            let hole: *mut T = ptr.add(dst);
            let last = ptr::read(ptr.add(src));
            ptr::replace(hole, last)
        }
    }

    /// Removes and returns the element at position `index` within the vector,
    /// shifting all elements after it to the left.
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut v = thinvec![1, 2, 3];
    /// assert_eq!(v.remove(1), 2);
    /// assert_eq!(v, [1, 3]);
    /// # }
    /// ```
    pub fn remove(&mut self, index: usize) -> T {
        if mem::size_of::<T>() == 0 {
            unsafe {
                let len = self.len();
                assert!(index < len);
                self.set_len(len - 1);
                return ptr::read(1 as *const T);
            }
        }
        let array: *mut T;
        let len: usize;
        let len_ptr = self.u.get() as *mut usize;
        let ptr = len_ptr as *mut u8;
        unsafe {
            len = *len_ptr;
            *len_ptr -= 1;
            array = ptr.add(<ThinVec<T>>::header_bytes()) as *mut T;
        }
        assert!(index < len);
        unsafe {
            // infallible
            let ret;
            {
                // the place we are taking from.
                let ptr = array.offset(index as isize);
                // copy it out, unsafely having a copy of the value on
                // the stack and in the vector at the same time.
                ret = ptr::read(ptr);

                // Shift everything down to fill in that spot.
                ptr::copy(ptr.offset(1), ptr, len - index - 1);
            }
            ret
        }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
    /// This method operates in place and preserves the order of the retained
    /// elements.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1, 2, 3, 4];
    /// vec.retain(|&x| x%2 == 0);
    /// assert_eq!(vec, [2, 4]);
    /// # }
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
        where F: FnMut(&T) -> bool
    {
        if mem::size_of::<T>() == 0 {
            let mut count = 0;
            unsafe {
                let t: T = ptr::read(1 as *const T);
                for _i in 0..self.len() {
                    if f(&t) { count += 1; }
                }
                self.set_len(count);
            }
            return;
        }
        let mut array: *mut T;
        let len: usize;
        {
            let len_ptr = self.u.get() as *mut usize;
            let ptr = len_ptr as *mut u8;
            unsafe {
                len = *len_ptr;
                array = ptr.add(<ThinVec<T>>::header_bytes()) as *mut T;
            }
        }
        unsafe {
            let end = array.add(len);
            let mut cur = array;
            let mut removed: usize = len;
            while array < end {
                if f(&*array) {
                    if array != cur {
                        ptr::copy_nonoverlapping(array, cur, 1);
                    }
                    cur = cur.add(1);
                    removed -= 1;
                } else {
                    ptr::drop_in_place(array);
                }
                array = array.add(1);
            }
            let len_ptr = self.u.get() as usize as *mut usize;
            *len_ptr -= removed;
        }
    }

    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
    /// relation.
    ///
    /// The `same_bucket` function is passed references to two elements from the vector, and
    /// returns `true` if the elements compare equal, or `false` if they do not. The elements are
    /// passed in opposite order from their order in the vector, so if `same_bucket(a, b)` returns
    /// `true`, `a` is removed.
    ///
    /// If the vector is sorted, this removes all duplicates.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec!["foo", "bar", "Bar", "baz", "bar"];
    ///
    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
    ///
    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
    /// # }
    /// ```
    pub fn dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool {
        if mem::size_of::<T>() == 0 {
            unsafe {
                if self.len() > 1 {
                    self.set_len(1);
                }
            }
            return;
        }
        unsafe {
            // Although we have a mutable reference to `self`, we cannot make
            // *arbitrary* changes. The `same_bucket` calls could panic, so we
            // must ensure that the vector is in a valid state at all time.
            //
            // The way that we handle this is by using swaps; we iterate
            // over all the elements, swapping as we go so that at the end
            // the elements we wish to keep are in the front, and those we
            // wish to reject are at the back. We can then truncate the
            // vector. This operation is still O(n).
            //
            // Example: We start in this state, where `r` represents "next
            // read" and `w` represents "next_write`.
            //
            //           r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 1 | 2 | 3 | 3 |
            //     +---+---+---+---+---+---+
            //           w
            //
            // Comparing self[r] against self[w-1], this is not a duplicate, so
            // we swap self[r] and self[w] (no effect as r==w) and then increment both
            // r and w, leaving us with:
            //
            //               r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 1 | 2 | 3 | 3 |
            //     +---+---+---+---+---+---+
            //               w
            //
            // Comparing self[r] against self[w-1], this value is a duplicate,
            // so we increment `r` but leave everything else unchanged:
            //
            //                   r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 1 | 2 | 3 | 3 |
            //     +---+---+---+---+---+---+
            //               w
            //
            // Comparing self[r] against self[w-1], this is not a duplicate,
            // so swap self[r] and self[w] and advance r and w:
            //
            //                       r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 2 | 1 | 3 | 3 |
            //     +---+---+---+---+---+---+
            //                   w
            //
            // Not a duplicate, repeat:
            //
            //                           r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 2 | 3 | 1 | 3 |
            //     +---+---+---+---+---+---+
            //                       w
            //
            // Duplicate, advance r. End of vec. Truncate to w.

            let ln = self.len();
            if ln <= 1 {
                return;
            }

            // Avoid bounds checks by using raw pointers.
            let p = self.as_mut_ptr();
            let mut r: usize = 1;
            let mut w: usize = 1;

            while r < ln {
                let p_r = p.offset(r as isize);
                let p_wm1 = p.offset((w - 1) as isize);
                if !same_bucket(&mut *p_r, &mut *p_wm1) {
                    if r != w {
                        let p_w = p_wm1.offset(1);
                        mem::swap(&mut *p_r, &mut *p_w);
                    }
                    w += 1;
                }
                r += 1;
            }

            self.truncate(w);
        }
    }

    /// Removes all but the first of consecutive elements in the vector that resolve to the same
    /// key.
    ///
    /// If the vector is sorted, this removes all duplicates.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![10, 20, 21, 30, 20];
    ///
    /// vec.dedup_by_key(|i| *i / 10);
    ///
    /// assert_eq!(vec, [10, 20, 30, 20]);
    /// # }
    /// ```
    #[inline]
    pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq {
        self.dedup_by(|a, b| key(a) == key(b))
    }

    /// Returns the number of elements in the vector, also referred to
    /// as its 'length'.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let a = thinvec![1, 2, 3];
    /// assert_eq!(a.len(), 3);
    /// # }
    /// ```
    #[inline(always)]
    pub fn len(&self) -> usize {
        if mem::size_of::<T>() == 0 { return (self.u.get() & (ZST_MASK - 1)) as usize; }
        unsafe { return if self.u.get() == DANGLE { 0 } else { *(self.u.get() as *mut usize) }; };
    }

    /// Returns `true` if the vector contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use thincollections::thin_vec::ThinVec;
    /// let mut v = ThinVec::new();
    /// assert!(v.is_empty());
    ///
    /// v.push(1);
    /// assert!(!v.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Appends an element to the back of a collection.
    ///
    /// # Panics
    ///
    /// Panics if the number of elements in the vector overflows a `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1, 2];
    /// vec.push(3);
    /// assert_eq!(vec, [1, 2, 3]);
    /// # }
    /// ```
    #[inline]
    pub fn push(&mut self, val: T) {
        if mem::size_of::<T>() == 0 {
            unsafe {
                let len = self.len();
                self.set_len(len + 1);
                return;
            }
        }
        self.possibly_grow_heap();
        unsafe {
            let len_ptr = self.u.get() as usize as *mut usize;
            let arr = (len_ptr as *mut u8).add(<ThinVec<T>>::header_bytes()) as *mut T;
            ptr::write(arr.add(*len_ptr), val);
            *len_ptr += 1;
        }
    }

    /// Removes the last element from a vector and returns it, or [`None`] if it
    /// is empty.
    ///
    /// [`None`]: ../../std/option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1, 2, 3];
    /// assert_eq!(vec.pop(), Some(3));
    /// assert_eq!(vec, [1, 2]);
    /// # }
    /// ```
    #[inline]
    pub fn pop(&mut self) -> Option<T> {
        if mem::size_of::<T>() == 0 {
            let len = self.len();
            if len > 0 {
                unsafe {
                    self.set_len(len - 1);
                    return Some(ptr::read(1 as *const T));
                }
            }
            return None;
        }
        if self.len() == 0 { return None; }
        let array: *mut T;
        let len: usize;
        {
            let len_ptr = self.u.get() as *mut usize;
            unsafe {
                len = *len_ptr;
                if len == 0 { return None; }
                let ptr = len_ptr as *mut u8;
                *len_ptr -= 1;
                array = ptr.add(<ThinVec<T>>::header_bytes()) as *mut T;
            }
        }
        unsafe {
            let ret;
            {
                let ptr = array.offset((len - 1) as isize);
                ret = ptr::read(ptr);
            }
            Some(ret)
        }
    }

    /// Moves all the elements of `other` into `Self`, leaving `other` empty.
    ///
    /// # Panics
    ///
    /// Panics if the number of elements in the vector overflows a `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1, 2, 3];
    /// let mut vec2 = thinvec![4, 5, 6];
    /// vec.append(&mut vec2);
    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
    /// assert_eq!(vec2, []);
    /// # }
    /// ```
    #[inline]
    pub fn append(&mut self, other: &mut Self) {
        if mem::size_of::<T>() == 0 {
            unsafe {
                let len = self.len() + other.len();
                self.set_len(len);
                other.u = NonZeroUsize::new_unchecked(ZST_MASK);
                return;
            }
        }
        unsafe {
            self.append_elements(other.as_slice() as _);
            let len_ptr = other.u.get() as *mut usize;
            *len_ptr = 0;
        }
    }

    #[inline]
    unsafe fn append_elements(&mut self, other: *const [T]) {
        let count = (*other).len();
        self.reserve(count);
        let len = self.len();
        ptr::copy_nonoverlapping(other as *const T, self.get_unchecked_mut(len), count);
        self.set_len(len + count);
    }

    unsafe fn set_len(&mut self, len: usize) {
        if mem::size_of::<T>() == 0 {
            self.u = NonZeroUsize::new_unchecked(len | ZST_MASK);
            return;
        }
        if self.u.get() == DANGLE {
            if len != 0 {
                panic!("can't set length of empyty ");
            } else {
                return;
            }
        }
        let len_ptr = self.u.get() as *mut usize;
        *len_ptr = len;
    }

    /// Splits the collection into two at the given index.
    ///
    /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
    /// and the returned `Self` contains elements `[at, len)`.
    ///
    /// Note that the capacity of `self` does not change.
    ///
    /// # Panics
    ///
    /// Panics if `at > len`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1,2,3];
    /// let vec2 = vec.split_off(1);
    /// assert_eq!(vec, [1]);
    /// assert_eq!(vec2, [2, 3]);
    /// # }
    /// ```
    #[inline]
    pub fn split_off(&mut self, at: usize) -> Self {
        let len = self.len();
        assert!(at <= len, "`at` out of bounds");

        let other_len = len - at;
        let mut other = ThinVec::with_capacity(other_len);

        // Unsafely `set_len` and copy items to `other`.
        unsafe {
            self.set_len(at);
            other.set_len(other_len);

            ptr::copy_nonoverlapping(self.as_ptr().offset(at as isize),
                                     other.as_mut_ptr(),
                                     other.len());
        }
        other
    }

    /// Clears the vector, removing all values.
    ///
    /// Note that this method has no effect on the allocated capacity
    /// of the vector.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut v = thinvec![1, 2, 3];
    ///
    /// v.clear();
    ///
    /// assert!(v.is_empty());
    /// # }
    /// ```
    #[inline]
    pub fn clear(&mut self) {
        self.truncate(0)
    }

    /// Converts the vector into [`Box<[T]>`][owned slice].
    ///
    /// This function causes a bunch of copying and should generally
    /// be avoided. ThinVec<T> is far more versatile than Box<[T]>
    ///
    /// Note that this will drop any excess capacity.
    ///
    /// [owned slice]: ../../std/boxed/struct.Box.html
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let v = thinvec![1, 2, 3];
    ///
    /// let slice = v.into_boxed_slice();
    /// assert_eq!([1,2,3], slice[..]);
    /// # }
    /// ```
    ///
    /// Any excess capacity is removed:
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # use thincollections::thin_vec::IntoThinVec;
    /// # fn main() {
    /// let mut vec = ThinVec::with_capacity(10);
    /// vec.extend([1, 2, 3].iter().cloned());
    ///
    /// assert_eq!(vec.capacity(), 10);
    /// let slice: Box<[i32]> = vec.into_boxed_slice();
    /// assert_eq!(slice.into_thinvec().capacity(), 3);
    /// # }
    /// ```
    pub fn into_boxed_slice(mut self) -> Box<[T]> {
        if mem::size_of::<T>() == 0 {
            unsafe {
                let slice = slice::from_raw_parts_mut(1 as *mut T, self.len());
                let output: Box<[T]> = Box::from_raw(slice);
                return output;
            }
        }
        unsafe {
            let array: *mut T;
            let len: usize;
            let len_ptr = self.u.get() as *mut usize;
            array = (len_ptr as *mut u8).add(<ThinVec<T>>::header_bytes()) as *mut T;
            len = *len_ptr;
            *len_ptr = 0; // prevents dropping of contents
            let layout = Layout::from_size_align(mem::size_of::<T>() * len, mem::align_of::<T>()).unwrap();
            let buffer = alloc::alloc(layout) as *mut T;
            ptr::copy_nonoverlapping(array, buffer, len);
            let slice = slice::from_raw_parts_mut(buffer, len);
            let output: Box<[T]> = Box::from_raw(slice);
            output
        }
    }

    /// Creates a draining iterator that removes the specified range in the vector
    /// and yields the removed items.
    ///
    /// Note 1: The element range is removed even if the iterator is only
    /// partially consumed or not consumed at all.
    ///
    /// Note 2: It is unspecified how many elements are removed from the vector
    /// if the `Drain` value is leaked.
    ///
    /// # Panics
    ///
    /// Panics if the starting point is greater than the end point or if
    /// the end point is greater than the length of the vector.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut v = thinvec![1, 2, 3];
    /// let u: ThinVec<_> = v.drain(1..).collect();
    /// assert_eq!(v, &[1]);
    /// assert_eq!(u, &[2, 3]);
    ///
    /// // A full range clears the vector
    /// v.drain(..);
    /// assert_eq!(v, &[]);
    /// # }
    /// ```
    pub fn drain<R>(&mut self, range: R) -> Drain<T>
        where R: RangeBounds<usize>
    {
        // Memory safety
        //
        // When the Drain is first created, it shortens the length of
        // the source vector to make sure no uninitialized or moved-from elements
        // are accessible at all if the Drain's destructor never gets to run.
        //
        // Drain will ptr::read out the values to remove.
        // When finished, remaining tail of the vec is copied back to cover
        // the hole, and the vector length is restored to the new length.
        //
        let len = self.len();
        let start = match range.start_bound() {
            Included(&n) => n,
            Excluded(&n) => n + 1,
            Unbounded => 0,
        };
        let end = match range.end_bound() {
            Included(&n) => n + 1,
            Excluded(&n) => n,
            Unbounded => len,
        };
        assert!(start <= end);
        assert!(end <= len);

        unsafe {
            // set self.vec length's to start, to be safe in case Drain is leaked
            self.set_len(start);
            // Use the borrow in the IterMut to indicate borrowing behavior of the
            // whole Drain iterator (like &mut T).
            let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().offset(start as isize),
                                                        end - start);
            Drain {
                tail_start: end,
                tail_len: len - end,
                iter: range_slice.iter(),
                vec: NonNull::from(self),
            }
        }
    }

    /// Creates a splicing iterator that replaces the specified range in the vector
    /// with the given `replace_with` iterator and yields the removed items.
    /// `replace_with` does not need to be the same length as `range`.
    ///
    /// Note 1: The element range is removed even if the iterator is not
    /// consumed until the end.
    ///
    /// Note 2: It is unspecified how many elements are removed from the vector,
    /// if the `Splice` value is leaked.
    ///
    /// Note 3: The input iterator `replace_with` is only consumed
    /// when the `Splice` value is dropped.
    ///
    /// Note 4: This is optimal if:
    ///
    /// * The tail (elements in the vector after `range`) is empty,
    /// * or `replace_with` yields fewer elements than `range`’s length
    /// * or the lower bound of its `size_hint()` is exact.
    ///
    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
    ///
    /// # Panics
    ///
    /// Panics if the starting point is greater than the end point or if
    /// the end point is greater than the length of the vector.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut v = thinvec![1, 2, 3];
    /// let new = [7, 8];
    /// let u: ThinVec<_> = v.splice(..2, new.iter().cloned()).collect();
    /// assert_eq!(v, &[7, 8, 3]);
    /// assert_eq!(u, &[1, 2]);
    /// # }
    /// ```
    #[inline]
    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<I::IntoIter>
        where R: RangeBounds<usize>, I: IntoIterator<Item=T>
    {
        Splice {
            drain: self.drain(range),
            replace_with: replace_with.into_iter(),
        }
    }

    /// Creates an iterator which uses a closure to determine if an element should be removed.
    ///
    /// If the closure returns true, then the element is removed and yielded.
    /// If the closure returns false, the element will remain in the vector and will not be yielded
    /// by the iterator.
    ///
    /// Using this method is equivalent to the following code:
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
    /// # let mut vec = thinvec![1, 2, 3, 4, 5, 6];
    /// let mut i = 0;
    /// while i != vec.len() {
    ///     if some_predicate(&mut vec[i]) {
    ///         let val = vec.remove(i);
    ///         // your code here
    ///     } else {
    ///         i += 1;
    ///     }
    /// }
    ///
    /// # assert_eq!(vec, thinvec![1, 4, 5]);
    /// # }
    /// ```
    ///
    /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
    /// because it can backshift the elements of the array in bulk.
    ///
    /// Note that `drain_filter` also lets you mutate every element in the filter closure,
    /// regardless of whether you choose to keep or remove it.
    ///
    ///
    /// # Examples
    ///
    /// Splitting an array into evens and odds, reusing the original allocation:
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut numbers = thinvec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
    ///
    /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<ThinVec<_>>();
    /// let odds = numbers;
    ///
    /// assert_eq!(evens, thinvec![2, 4, 6, 8, 14]);
    /// assert_eq!(odds, thinvec![1, 3, 5, 9, 11, 13, 15]);
    /// # }
    /// ```
    pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<T, F>
        where F: FnMut(&mut T) -> bool,
    {
        let old_len = self.len();

        // Guard against us getting leaked (leak amplification)
        unsafe { self.set_len(0); }

        DrainFilter {
            vec: self,
            idx: 0,
            del: 0,
            old_len,
            pred: filter,
        }
    }

    fn extend_desugared<I: Iterator<Item=T>>(&mut self, mut iterator: I) {
        // This is the case for a general iterator.
        //
        // This function should be the moral equivalent of:
        //
        //      for item in iterator {
        //          self.push(item);
        //      }
        if mem::size_of::<T>() == 0 {
            let mut count = 0;
            while let Some(_element) = iterator.next() { count += 1; }
            unsafe {
                let len = self.len();
                self.set_len(len + count);
            }
            return;
        }
        while let Some(element) = iterator.next() {
            let len = self.len();
            if len == self.capacity() {
                let (lower, _) = iterator.size_hint();
                self.reserve(lower.saturating_add(1));
            }
            unsafe {
                ptr::write(self.get_unchecked_mut(len), element);
                // NB can't overflow since we would have had to alloc the address space
                self.set_len(len + 1);
            }
        }
    }

    #[cold]
    fn allocate_array(capacity: usize) -> *mut u8 {
        unsafe {
            // align_of is a power of 2. 2 * size_of::<usize> is a power of 2.
            // if align_of is smaller than 2*size_of::<usize>, we'll have no padding between the header and array
            // if align_of is bigger than 2*size_of::<usize>, we'll use the first align for the header
            let align = cmp::max(mem::align_of::<usize>(), mem::align_of::<T>());
            let layout = Layout::from_size_align(mem::size_of::<T>() * capacity + <ThinVec<T>>::header_bytes(), align).unwrap();
            let buffer = alloc::alloc(layout);
            ptr::write(buffer as *mut usize, 0); // current length
            ptr::write((buffer as *mut usize).add(1), capacity);
            buffer
        }
    }

    #[inline]
    fn possibly_grow_heap(&mut self) {
        unsafe {
            if self.u.get() == DANGLE {
                self.u = NonZeroUsize::new_unchecked(<ThinVec<T>>::allocate_array(8) as usize);
                return;
            }
            let len_ptr = self.u.get() as *mut usize;
            let cap_ptr = len_ptr.add(1);
            if *len_ptr == *cap_ptr {
                self.realloc_heap(len_ptr, *len_ptr * 2);
            }
        }
    }

    #[inline(always)]
    fn header_bytes() -> usize {
        cmp::max(mem::size_of::<usize>() * 2, mem::align_of::<T>())
    }

    #[inline(always)]
    fn realloc_heap(&mut self, len_ptr: *mut usize, new_capacity: usize) {
        unsafe {
            //realloc seems to bench slower...
            let head_ptr = <ThinVec<T>>::allocate_array(new_capacity);
            let header_bytes = <ThinVec<T>>::header_bytes();
            let to_move = cmp::min(new_capacity, *(len_ptr.add(1)));
            ptr::copy_nonoverlapping(len_ptr as *mut u8, head_ptr, to_move * mem::size_of::<T>() + header_bytes);
            let new_cap_ptr = (head_ptr as *mut usize).add(1);
            *new_cap_ptr = new_capacity;
            self.u = NonZeroUsize::new_unchecked(head_ptr as usize);
            let old = len_ptr as *mut u8;
            let align = cmp::max(mem::align_of::<usize>(), mem::align_of::<T>());
            let layout = Layout::from_size_align(mem::size_of::<T>() * (*(len_ptr.add(1))) + header_bytes, align).unwrap();
            alloc::dealloc(old, layout);
        }
    }
}

impl<T: Clone> ThinVec<T> {
    pub fn from_elem(elem: T, count: usize) -> ThinVec<T> {
        let mut thinvec = ThinVec::with_capacity(count);
        for _i in 0..count as isize {
            thinvec.push(elem.clone());
        }
        thinvec
    }

    pub fn extend_from_slice(&mut self, slice: &[T]) {
        self.reserve(slice.len());
        unsafe {
            let mut len = self.len();
            let mut dst = self.get_unchecked_mut(len) as *mut T;
            for t in slice.iter() {
                ptr::write(dst, t.clone());
                dst = dst.add(1);
                len += 1;
                self.set_len(len); // we set len here in the loop in case clone breaks.
            }
        }
    }
}

impl<T> Drop for ThinVec<T> {
    fn drop(&mut self) {
        unsafe {
            if mem::size_of::<T>() == 0 {
                self.u = NonZeroUsize::new_unchecked(ZST_MASK);
                return;
            }
            if self.u.get() == DANGLE { return; }
            let len_ptr = self.u.get() as *mut usize;
            let header_bytes = <ThinVec<T>>::header_bytes();

            if mem::needs_drop::<T>() {
                let mut cur = (len_ptr as *mut u8).add(header_bytes) as *mut T;
                let end = cur.add(*len_ptr);
                while cur < end {
                    ptr::drop_in_place(cur);
                    cur = cur.add(1);
                }
            }

            let align = cmp::max(mem::align_of::<usize>(), mem::align_of::<T>());
            let layout = Layout::from_size_align(mem::size_of::<T>() * (*(len_ptr.add(1))) + header_bytes, align).unwrap();
            alloc::dealloc(self.u.get() as *mut u8, layout);
            self.u = NonZeroUsize::new_unchecked(DANGLE);
        }
    }
}

impl<T: Copy> ThinVec<T> {
    /// Transmutes the vector `ThinVec<T>` into another type of vector `ThinVec<X>`.
    /// Consumes the original vector.
    ///
    /// `mem::size_of::<X>` must equal `mem::size_of::<T>`
    ///
    /// `mem::align_of::<X>` must equal `mem::align_of::<T>`
    ///
    /// This is achieved with no copying at all, making it super fast.
    /// Both `X` and `T` must be `Copy` types so as to guarantee no Drop (for sanity's sake only; no copying is performed).
    ///
    /// This is useful and safe for all primitive types that have the same width
    /// For example:
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let vecu: ThinVec<u8> = thinvec![1, 2, 3, 128, 0xFF];
    /// unsafe {
    ///     let veci: ThinVec<i8> = vecu.transmute();
    ///     assert_eq!(1, veci[0]);
    ///     assert_eq!(-128i8, veci[3]);
    ///     assert_eq!(-1i8, veci[4]);
    /// }
    /// # }
    /// ```
    ///
    /// Please note that this works the same way as mem::transmute.
    /// It does not do any sort of numeric conversion. It reuses the same
    /// bits for the new type. So going from `f32` to `i32` is not going to
    /// create sensible numbers, just the same "weird" integers that `f32::to_bits`
    /// produces.
    ///
    /// It might also be useful for converting from primitives to single elements structs,
    /// including some of the special types like `NonZeroU32`, if you know you don't violate
    /// any of the struct's invariants (e.g. no zeros if you're converting to `NonZeroU32`).
    /// repr(transparent) is a good annotation to use on such types.
    ///
    /// One thing this can help with is with a total ordered floating point wrapper struct that will
    /// then allow for sorting, max, binary search, etc.
    /// see [Sorting] for an example
    ///
    /// Avoid using this for (multi-element) `repr(Rust)` structs. It might be somewhat useful for
    /// `repr(C)` structs if you know what you're doing.
    ///
    /// Under no circumstances does it make sense to transmute to enum wrappers such as Option, as
    /// the bit pattern for these is not well specified (even if they happen to have the same size).
    ///
    /// # Panics
    ///
    /// Panics if the the size or alignment of X and T are different.
    ///
    /// [Sorting]: #sorting
    ///
    pub unsafe fn transmute<X: Copy>(self) -> ThinVec<X> {
        assert!(mem::size_of::<X>() == mem::size_of::<T>());
        assert!(mem::align_of::<X>() == mem::align_of::<T>());
        let v: ThinVec<X> = ThinVec { u: self.u, _marker: marker::PhantomData };
        mem::forget(self);
        v
    }
}

impl<T, I> Index<I> for ThinVec<T>
    where
        I: SliceIndex<[T]>,
{
    type Output = I::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        Index::index(&**self, index)
    }
}

impl<T, I> IndexMut<I> for ThinVec<T>
    where
        I: SliceIndex<[T]>,
{
    #[inline]
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        IndexMut::index_mut(&mut **self, index)
    }
}

impl<T> Deref for ThinVec<T> {
    type Target = [T];

    fn deref(&self) -> &[T] {
        unsafe {
            if mem::size_of::<T>() == 0 { return slice::from_raw_parts(1 as *const T, self.len()); }
            let len: usize;
            let arr: *mut T;
            if self.u.get() == DANGLE {
                len = 0;
                arr = ptr::null_mut();
            } else {
                let len_ptr = self.u.get() as *mut usize;
                len = *len_ptr;
                arr = (len_ptr as *mut u8).add(<ThinVec<T>>::header_bytes()) as *mut T;
            }
            slice::from_raw_parts(arr, len)
        }
    }
}

impl<T> DerefMut for ThinVec<T> {
    fn deref_mut(&mut self) -> &mut [T] {
        unsafe {
            if mem::size_of::<T>() == 0 { return slice::from_raw_parts_mut(1 as *mut T, self.len()); }
            let len: usize;
            let arr: *mut T;
            if self.u.get() == DANGLE {
                len = 0;
                arr = ptr::null_mut();
            } else {
                let len_ptr = self.u.get() as *mut usize;
                len = *len_ptr;
                arr = (len_ptr as *mut u8).add(<ThinVec<T>>::header_bytes()) as *mut T;
            }
            slice::from_raw_parts_mut(arr, len)
        }
    }
}

macro_rules! __impl_slice_eq1 {
    ($Lhs: ty, $Rhs: ty) => {
        __impl_slice_eq1! { $Lhs, $Rhs, Sized }
    };
    ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
        impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
            #[inline]
            fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] }
            #[inline]
            fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] }
        }
    }
}

__impl_slice_eq1! { ThinVec<A>, ThinVec<B> }
__impl_slice_eq1! { ThinVec<A>, &'b [B] }
__impl_slice_eq1! { ThinVec<A>, &'b mut [B] }
//__impl_slice_eq1! { &'b [A], ThinVec<B> }
//__impl_slice_eq1! { &'b mut [A], ThinVec<B> }

macro_rules! array_impls {
    ($($N: expr)+) => {
        $(
            // NOTE: some less important impls are omitted to reduce code bloat
            __impl_slice_eq1! { ThinVec<A>, [B; $N] }
            __impl_slice_eq1! { ThinVec<A>, &'b [B; $N] }
            // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] }
            // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone }
            // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone }
            // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone }
        )+
    }
}

array_impls! {
     0  1  2  3  4  5  6  7  8  9
    10 11 12 13 14 15 16 17 18 19
    20 21 22 23 24 25 26 27 28 29
    30 31 32
}

impl<T: fmt::Debug> fmt::Debug for ThinVec<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

/// An iterator that moves out of a vector.
///
/// This `struct` is created by the `into_iter` method on [`ThinVec`][`ThinVec`] (provided
/// by the [`IntoIterator`] trait).
///
/// [`ThinVec`]: struct.ThinVec.html
/// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html
pub struct IntoIter<T> {
    buf: *mut u8,
    _marker: marker::PhantomData<T>,
    ptr: *const T,
    end: *const T,
}

impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("IntoIter")
            .field(&self.as_slice())
            .finish()
    }
}

impl<T> IntoIterator for ThinVec<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    /// Creates a consuming iterator, that is, one that moves each value out of
    /// the vector (from start to end). The vector cannot be used after calling
    /// this.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let v = thinvec!["a".to_string(), "b".to_string()];
    /// for s in v.into_iter() {
    ///     // s has type String, not &String
    ///     println!("{}", s);
    /// }
    /// # }
    /// ```
    #[inline]
    fn into_iter(mut self) -> IntoIter<T> {
        unsafe {
            if mem::size_of::<T>() == 0 {
                let ptr = self.as_mut_ptr();
                let end = (ptr as *const u8).add(self.len()) as *const T;
                mem::forget(self);
                return IntoIter {
                    buf: ptr::null_mut(),
                    _marker: marker::PhantomData,
                    ptr,
                    end,
                };
            }
            if self.u.get() == DANGLE {
                return IntoIter {
                    buf: ptr::null_mut(),
                    _marker: marker::PhantomData,
                    ptr: ptr::null_mut(),
                    end: ptr::null_mut(),
                };
            }
            let len_ptr = self.u.get() as usize as *mut u8 as *mut usize;
            let begin = (len_ptr as *mut u8).add(<ThinVec<T>>::header_bytes()) as *mut T;
            let end = begin.offset(*len_ptr as isize) as *const T;

            let buf = len_ptr as *mut u8;
            mem::forget(self);
            IntoIter {
                buf,
                _marker: marker::PhantomData,
                ptr: begin,
                end,
            }
        }
    }
}

impl<'a, T> IntoIterator for &'a ThinVec<T> {
    type Item = &'a T;
    type IntoIter = slice::Iter<'a, T>;

    fn into_iter(self) -> slice::Iter<'a, T> {
        self.iter()
    }
}

impl<'a, T> IntoIterator for &'a mut ThinVec<T> {
    type Item = &'a mut T;
    type IntoIter = slice::IterMut<'a, T>;

    fn into_iter(self) -> slice::IterMut<'a, T> {
        self.iter_mut()
    }
}

impl<T> IntoIter<T> {
    /// Returns the remaining items of this iterator as a slice.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let vec = thinvec!['a', 'b', 'c'];
    /// let mut into_iter = vec.into_iter();
    /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
    /// let _ = into_iter.next().unwrap();
    /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
    /// # }
    /// ```
    pub fn as_slice(&self) -> &[T] {
        unsafe {
            slice::from_raw_parts(self.ptr, self.len())
        }
    }

    /// Returns the remaining items of this iterator as a mutable slice.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let vec = thinvec!['a', 'b', 'c'];
    /// let mut into_iter = vec.into_iter();
    /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
    /// into_iter.as_mut_slice()[2] = 'z';
    /// assert_eq!(into_iter.next().unwrap(), 'a');
    /// assert_eq!(into_iter.next().unwrap(), 'b');
    /// assert_eq!(into_iter.next().unwrap(), 'z');
    /// # }
    /// ```
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe {
            slice::from_raw_parts_mut(self.ptr as *mut T, self.len())
        }
    }
}

unsafe impl<T: Send> Send for IntoIter<T> {}

unsafe impl<T: Sync> Sync for IntoIter<T> {}

impl<T> Iterator for IntoIter<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        unsafe {
            if self.ptr as *const _ == self.end {
                None
            } else {
                if mem::size_of::<T>() == 0 {
                    // cast to u8, so we add 1, not zero
                    self.ptr = (self.ptr as *mut u8).add(1) as *mut T;

                    // Use a non-null pointer value
                    // (self.ptr might be null because of wrapping)
                    Some(ptr::read(1 as *mut T))
                } else {
                    let old = self.ptr;
                    self.ptr = self.ptr.offset(1);

                    Some(ptr::read(old))
                }
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let exact = if mem::size_of::<T>() == 0 {
            (self.end as usize).wrapping_sub(self.ptr as usize)
        } else {
            (self.end as usize).wrapping_sub(self.ptr as usize) / mem::size_of::<T>()
        };
        (exact, Some(exact))
    }

    #[inline]
    fn count(self) -> usize {
        self.len()
    }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        unsafe {
            if self.end == self.ptr {
                None
            } else {
                if mem::size_of::<T>() == 0 {
                    self.end = (self.end as *const i8).sub(1) as *mut T;

                    // Use a non-null pointer value
                    // (self.end might be null because of wrapping)
                    Some(ptr::read(1 as *mut T))
                } else {
                    self.end = self.end.offset(-1);

                    Some(ptr::read(self.end))
                }
            }
        }
    }
}

impl<T> ExactSizeIterator for IntoIter<T> {}

impl<T> FusedIterator for IntoIter<T> {}

impl<T: Clone> Clone for IntoIter<T> {
    fn clone(&self) -> IntoIter<T> {
        self.as_slice().to_thinvec().into_iter()
    }
}

pub trait ToThinVec<T> {
    fn to_thinvec(&self) -> ThinVec<T>;
}

pub trait IntoThinVec<T> {
    fn into_thinvec(self) -> ThinVec<T>;
}

impl<T: Clone> ToThinVec<T> for [T] {
    fn to_thinvec(&self) -> ThinVec<T> {
        let mut vector = ThinVec::with_capacity(self.len());
        vector.extend_desugared(self.iter().cloned());
        vector
    }
}

impl<T> IntoThinVec<T> for Box<[T]> {
    fn into_thinvec(self) -> ThinVec<T> {
        unsafe {
            let len = self.len();
            let ptr = self.as_ptr();
            let mut vec = ThinVec::with_capacity(len);
            ptr::copy(ptr, vec.as_mut_ptr(), len);
            vec.set_len(len);
            mem::forget(self); // prevent it from dropping the contents
            vec
        }
    }
}

impl<T> Drop for IntoIter<T> {
    fn drop(&mut self) {
        if mem::size_of::<T>() == 0 { return; }
        // destroy the remaining elements
        for _x in self.by_ref() {}

        unsafe {
            if !self.buf.is_null() {
                let len_ptr = self.buf as *mut usize;
                let align = cmp::max(mem::align_of::<usize>(), mem::align_of::<T>());
                let layout = Layout::from_size_align(mem::size_of::<T>() * (*(len_ptr.add(1))) + <ThinVec<T>>::header_bytes(), align).unwrap();
                alloc::dealloc(self.buf, layout);
                self.buf = ptr::null_mut();
            }
        }
    }
}

impl<T> Extend<T> for ThinVec<T> {
    #[inline]
    fn extend<I: IntoIterator<Item=T>>(&mut self, iter: I) {
        self.extend_desugared(iter.into_iter())
    }
}

impl<'a, T: 'a + Copy> Extend<&'a T> for ThinVec<T> {
    #[inline]
    fn extend<I: IntoIterator<Item=&'a T>>(&mut self, iter: I) {
        self.extend_desugared(iter.into_iter().cloned())
    }
}

impl<T> Default for ThinVec<T> {
    /// Creates an empty `ThinVec<T>`.
    fn default() -> ThinVec<T> {
        ThinVec::new()
    }
}

impl<'a, T: Clone> From<&'a [T]> for ThinVec<T> {
    fn from(s: &'a [T]) -> ThinVec<T> {
        s.to_thinvec()
    }
}

impl<'a, T: Clone> From<&'a mut [T]> for ThinVec<T> {
    fn from(s: &'a mut [T]) -> ThinVec<T> {
        s.to_thinvec()
    }
}

impl<T> From<Box<[T]>> for ThinVec<T> {
    fn from(s: Box<[T]>) -> ThinVec<T> {
        s.into_thinvec()
    }
}

impl<'a, T> From<Cow<'a, [T]>> for ThinVec<T> where [T]: ToOwned<Owned=ThinVec<T>> {
    fn from(s: Cow<'a, [T]>) -> ThinVec<T> {
        s.into_owned()
    }
}

impl<'a> From<&'a str> for ThinVec<u8> {
    fn from(s: &'a str) -> ThinVec<u8> {
        From::from(s.as_bytes())
    }
}

impl<T> FromIterator<T> for ThinVec<T> {
    #[inline]
    fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> ThinVec<T> {
        let into_iter = iter.into_iter();
        let (lower, _) = into_iter.size_hint();
        let mut thinvec = ThinVec::with_capacity(lower);
        thinvec.extend_desugared(into_iter);
        thinvec
    }
}

/// A draining iterator for `ThinVec<T>`.
///
/// This `struct` is created by the [`drain`] method on [`ThinVec`].
///
/// [`drain`]: struct.ThinVec.html#method.drain
/// [`ThinVec`]: struct.ThinVec.html
pub struct Drain<'a, T: 'a> {
    /// Index of tail to preserve
    tail_start: usize,
    /// Length of tail
    tail_len: usize,
    /// Current remaining range to remove
    iter: slice::Iter<'a, T>,
    vec: NonNull<ThinVec<T>>,
}

impl<'a, T: 'a + fmt::Debug> fmt::Debug for Drain<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("Drain")
            .field(&self.iter.as_slice())
            .finish()
    }
}

unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {}

unsafe impl<'a, T: Send> Send for Drain<'a, T> {}

impl<'a, T> Iterator for Drain<'a, T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
    }
}

impl<'a, T> Drop for Drain<'a, T> {
    fn drop(&mut self) {
        // exhaust self first
        self.for_each(drop);

        if self.tail_len > 0 {
            unsafe {
                let source_vec = self.vec.as_mut();
                // memmove back untouched tail, update to new length
                let start = source_vec.len();
                let tail = self.tail_start;
                if tail != start {
                    let src = source_vec.as_ptr().offset(tail as isize);
                    let dst = source_vec.as_mut_ptr().offset(start as isize);
                    ptr::copy(src, dst, self.tail_len);
                }
                source_vec.set_len(start + self.tail_len);
            }
        }
    }
}


impl<'a, T> ExactSizeIterator for Drain<'a, T> {}

impl<'a, T> FusedIterator for Drain<'a, T> {}

/// A splicing iterator for `ThinVec`.
///
/// This struct is created by the [`splice()`] method on [`ThinVec`]. See its
/// documentation for more.
///
/// [`splice()`]: struct.ThinVec.html#method.splice
/// [`ThinVec`]: struct.ThinVec.html
#[derive(Debug)]
pub struct Splice<'a, I: Iterator + 'a> {
    drain: Drain<'a, I::Item>,
    replace_with: I,
}

impl<'a, I: Iterator> Iterator for Splice<'a, I> {
    type Item = I::Item;

    fn next(&mut self) -> Option<Self::Item> {
        self.drain.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.drain.size_hint()
    }
}

impl<'a, I: Iterator> DoubleEndedIterator for Splice<'a, I> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.drain.next_back()
    }
}

impl<'a, I: Iterator> ExactSizeIterator for Splice<'a, I> {}


impl<'a, I: Iterator> Drop for Splice<'a, I> {
    fn drop(&mut self) {
        self.drain.by_ref().for_each(drop);
//        unsafe { self.drain.vec.as_ref().debug_i32(); }

        unsafe {
            if self.drain.tail_len == 0 {
                self.drain.vec.as_mut().extend(self.replace_with.by_ref());
                return;
            }

            // First fill the range left by drain().
            if !self.drain.fill(&mut self.replace_with) {
                return;
            }

            // There may be more elements. Use the lower bound as an estimate.
            let (lower_bound, _upper_bound) = self.replace_with.size_hint();
            if lower_bound > 0 {
                self.drain.move_tail(lower_bound);
                if !self.drain.fill(&mut self.replace_with) {
                    return;
                }
            }

            // Collect any remaining elements.
            // This is a zero-length vector which does not allocate if `lower_bound` was exact.
            let mut collected = self.replace_with.by_ref().collect::<ThinVec<I::Item>>().into_iter();
            // Now we have an exact count.
            if collected.len() > 0 {
                self.drain.move_tail(collected.len());
                let filled = self.drain.fill(&mut collected);
                debug_assert!(filled);
                debug_assert_eq!(collected.len(), 0);
            }
        }
        // Let `Drain::drop` move the tail back if necessary and restore `vec.len`.
    }
}

/// Private helper methods for `Splice::drop`
impl<'a, T> Drain<'a, T> {
    /// The range from `self.vec.len` to `self.tail_start` contains elements
    /// that have been moved out.
    /// Fill that range as much as possible with new elements from the `replace_with` iterator.
    /// Return whether we filled the entire range. (`replace_with.next()` didn’t return `None`.)
    unsafe fn fill<I: Iterator<Item=T>>(&mut self, replace_with: &mut I) -> bool {
        let vec = self.vec.as_mut();
        let range_start = vec.len();
        let range_end = self.tail_start;
        let range_slice = slice::from_raw_parts_mut(
            vec.as_mut_ptr().offset(range_start as isize),
            range_end - range_start);

        let mut count = range_start;
        for place in range_slice {
            if let Some(new_item) = replace_with.next() {
                ptr::write(place, new_item);
                count += 1;
                vec.set_len(count);
            } else {
                return false;
            }
        }
        true
    }

    /// Make room for inserting more elements before the tail.
    unsafe fn move_tail(&mut self, extra_capacity: usize) {
        let vec = self.vec.as_mut();
        vec.reserve(extra_capacity);

        let new_tail_start = self.tail_start + extra_capacity;
        let src = vec.as_ptr().offset(self.tail_start as isize);
        let dst = vec.as_mut_ptr().offset(new_tail_start as isize);
        ptr::copy(src, dst, self.tail_len);
        self.tail_start = new_tail_start;
    }
}

pub trait CloneIntoThinVec<T> {
    fn clone_into_thinvec(&self, target: &mut ThinVec<T>);
}

impl<T: Clone> CloneIntoThinVec<T> for [T] {
    fn clone_into_thinvec(&self, target: &mut ThinVec<T>) {
        // drop anything in target that will not be overwritten
        target.truncate(self.len());
        let len = target.len();

        // reuse the contained values' allocations/resources.
        target.clone_from_slice(&self[..len]);

        // target.len <= self.len due to the truncate above, so the
        // slice here is always in-bounds.
        target.extend_from_slice(&self[len..]);
    }
}

impl<T: Clone> Clone for ThinVec<T> {
    fn clone(&self) -> ThinVec<T> {
        <[T]>::to_thinvec(&**self)
    }

    fn clone_from(&mut self, other: &ThinVec<T>) {
        other.as_slice().clone_into_thinvec(self);
    }
}

/// An iterator produced by calling `drain_filter` on ThinVec.
#[derive(Debug)]
pub struct DrainFilter<'a, T: 'a, F>
    where F: FnMut(&mut T) -> bool,
{
    vec: &'a mut ThinVec<T>,
    idx: usize,
    del: usize,
    old_len: usize,
    pred: F,
}

impl<'a, T, F> Iterator for DrainFilter<'a, T, F>
    where F: FnMut(&mut T) -> bool,
{
    type Item = T;

    fn next(&mut self) -> Option<T> {
        unsafe {
            while self.idx != self.old_len {
                let i = self.idx;
                self.idx += 1;
                let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
                if (self.pred)(&mut v[i]) {
                    self.del += 1;
                    return Some(ptr::read(&v[i]));
                } else if self.del > 0 {
                    let del = self.del;
                    let src: *const T = &v[i];
                    let dst: *mut T = &mut v[i - del];
                    // This is safe because self.vec has length 0
                    // thus its elements will not have Drop::drop
                    // called on them in the event of a panic.
                    ptr::copy_nonoverlapping(src, dst, 1);
                }
            }
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, Some(self.old_len - self.idx))
    }
}

impl<'a, T, F> Drop for DrainFilter<'a, T, F>
    where F: FnMut(&mut T) -> bool,
{
    fn drop(&mut self) {
        self.for_each(drop);
        unsafe {
            self.vec.set_len(self.old_len - self.del);
        }
    }
}

impl<T: PartialEq> ThinVec<T> {
    /// Removes consecutive repeated elements in the vector.
    ///
    /// If the vector is sorted, this removes all duplicates.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = vec![1, 2, 2, 3, 2];
    ///
    /// vec.dedup();
    ///
    /// assert_eq!(vec, [1, 2, 3, 2]);
    /// # }
    /// ```
    #[inline]
    pub fn dedup(&mut self) {
        self.dedup_by(|a, b| a == b)
    }

    /// Removes the first instance of `item` from the vector if the item exists.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate thincollections;
    /// # use thincollections::thin_vec::ThinVec;
    /// # fn main() {
    /// let mut vec = thinvec![1, 2, 3, 1];
    ///
    /// vec.remove_item(&1);
    ///
    /// assert_eq!(vec, thinvec![2, 3, 1]);
    /// # }
    /// ```
    pub fn remove_item(&mut self, item: &T) -> Option<T> {
        let pos = self.iter().position(|x| *x == *item)?;
        Some(self.remove(pos))
    }
}

impl<T> Borrow<[T]> for ThinVec<T> {
    fn borrow(&self) -> &[T] {
        &self[..]
    }
}

impl<T> BorrowMut<[T]> for ThinVec<T> {
    fn borrow_mut(&mut self) -> &mut [T] {
        &mut self[..]
    }
}