1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#![allow(clippy::float_cmp)]

use crate::{SmtMapping, TxHash};
use serde::{Deserialize, Serialize};
use tmelcrypt::Ed25519PK;

/// StakeDoc is a stake document. It encapsulates all the information needed to verify consensus proofs.
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct StakeDoc {
    /// Public key.
    pub pubkey: Ed25519PK,
    /// Starting epoch.
    pub e_start: u64,
    /// Ending epoch. This is the epoch *after* the last epoch in which the syms are effective.
    pub e_post_end: u64,
    /// Number of syms staked.
    pub syms_staked: u128,
}

/// A stake mapping
pub type StakeMapping = SmtMapping<TxHash, StakeDoc>;

impl StakeMapping {
    /// Gets the voting power, as a floating-point number, for a given public key and a given epoch.
    pub fn vote_power(&self, epoch: u64, pubkey: Ed25519PK) -> f64 {
        let mut total_votes = 1e-50;
        let mut target_votes = 0.0;
        for sdoc in self.val_iter() {
            if epoch >= sdoc.e_start && epoch < sdoc.e_post_end {
                total_votes += sdoc.syms_staked as f64;
                if sdoc.pubkey == pubkey {
                    target_votes += sdoc.syms_staked as f64;
                }
            }
        }
        target_votes / total_votes
    }

    /// Filter out all the elements that no longer matter.
    pub fn remove_stale(&mut self, epoch: u64) {
        let stale_key_hashes = self
            .mapping
            .iter()
            .filter_map(|(kh, v)| {
                let v: StakeDoc = stdcode::deserialize(&v).unwrap();
                if epoch > v.e_post_end {
                    Some(kh)
                } else {
                    None
                }
            })
            .collect::<Vec<_>>();
        for stale_key in stale_key_hashes {
            self.mapping.insert(stale_key, Default::default());
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{melvm, CoinData, CoinDataHeight, CoinID};
    use crate::{Denom, State};
    use rstest::rstest;
    use std::collections::HashMap;
    use tmelcrypt::Ed25519SK;

    /// Create a state using a mapping from sk to syms staked for an epoch
    fn create_state(stakers: &HashMap<Ed25519SK, u128>, epoch_start: u64) -> State {
        // Create emtpy state
        let db = novasmt::Forest::new(novasmt::InMemoryBackend::default());
        let mut state = State::new_empty_testnet(db);

        // Insert a mel coin into state so we can transact
        let start_micromels = 10000;
        let start_conshash = melvm::Covenant::always_true().hash();
        state.coins.insert(
            CoinID {
                txhash: tmelcrypt::HashVal([0; 32]).into(),
                index: 0,
            },
            CoinDataHeight {
                coin_data: CoinData {
                    covhash: start_conshash,
                    value: start_micromels,
                    denom: Denom::Mel,
                    additional_data: vec![],
                },
                height: 0,
            },
        );

        // Insert data need for staking proofs
        for (i, (sk, syms_staked)) in stakers.iter().enumerate() {
            state.stakes.insert(
                tmelcrypt::hash_single(&(i as u128).to_be_bytes()).into(),
                StakeDoc {
                    pubkey: sk.to_public(),
                    e_start: epoch_start,
                    e_post_end: 1000000000,
                    syms_staked: *syms_staked,
                },
            );
        }
        state
    }

    #[rstest(
        staked_syms => [vec![100u128], vec![100u128, 10], vec![1u128, 2u128, 3u128]]
    )]
    fn test_non_staker_has_no_vote_power(staked_syms: Vec<u128>) {
        // Generate genesis block for stakers
        // let staked_syms =vec![100 as u64; 3];
        let stakers = staked_syms
            .into_iter()
            .map(|e| (tmelcrypt::ed25519_keygen().1, e))
            .collect();
        let genesis = create_state(&stakers, 0);

        // call vote_power for a key pair who is not a staker
        let (pk, _sk) = tmelcrypt::ed25519_keygen();
        let vote_power = genesis.stakes.vote_power(0, pk);

        // assert they have no vote power
        assert_eq!(vote_power, 0.0)
    }

    #[rstest(
        staked_syms => [vec![100_u128, 200_u128, 300_u128], vec![100_u128, 10], vec![1_128, 2_u128, 30_u128]]
    )]
    fn test_staker_has_correct_vote_power_in_epoch(staked_syms: Vec<u128>) {
        // Generate state for stakers
        let total_staked_syms: u128 = staked_syms.iter().sum();
        let stakers = staked_syms
            .into_iter()
            .map(|e| (tmelcrypt::ed25519_keygen().1, e))
            .collect();
        let state = create_state(&stakers, 0);

        // Check the vote power of each staker in epoch 0 has expected value
        for (sk, vote) in stakers.iter() {
            let vote_power = state.stakes.vote_power(0, sk.to_public());
            let expected_vote_power = (*vote as f64) / (total_staked_syms as f64);
            assert_eq!(expected_vote_power - vote_power, 0.0);
        }
    }

    #[rstest(
        epoch_start => [1, 2, 100]
    )]
    fn test_staker_has_no_vote_power_in_previous_epoch(epoch_start: u64) {
        // Generate state for stakers
        let staked_syms = vec![100u128; 3];
        let stakers = staked_syms
            .into_iter()
            .map(|e| (tmelcrypt::ed25519_keygen().1, e))
            .collect();
        let state = create_state(&stakers, epoch_start);

        // Check the vote power of each staker in epoch has expected value
        for (sk, _vote) in stakers.iter() {
            // Go through all previous epochs before epoch_start
            // and ensure no vote power
            for epoch in 0..epoch_start {
                let vote_power = state.stakes.vote_power(epoch, sk.to_public());
                let expected_vote_power = 0.0;
                assert_eq!(vote_power, expected_vote_power);
            }
            // Confirm vote power is non zero if at epoch_start
            let vote_power = state.stakes.vote_power(epoch_start, sk.to_public());
            let expected_vote_power = 0.0;
            assert_ne!(vote_power, expected_vote_power);
        }
    }

    #[rstest(
        staked_sym => [1, 2, 123]
    )]
    fn test_vote_power_single_staker_is_total(staked_sym: u128) {
        // Add in a single staker to get a state at epoch 0
        let (pk, sk) = tmelcrypt::ed25519_keygen();
        let mut stakers = HashMap::new();
        stakers.insert(sk, staked_sym);
        let state = create_state(&stakers, 0);

        // Ensure staker has 1.0 voting power as expected
        let expected_voting_power = 1.0;
        assert_eq!(state.stakes.vote_power(0, pk), expected_voting_power);
    }

    #[rstest(
        epoch => [0, 1, 100]
    )]
    fn test_vote_power_is_zero_no_stakers(epoch: u64) {
        let stakers = HashMap::new();
        let state = create_state(&stakers, epoch);

        let voting_power = state
            .stakes
            .vote_power(epoch, tmelcrypt::ed25519_keygen().0);
        assert_eq!(voting_power, 0.0);
    }

    #[rstest(
        staked_syms => [vec![0], vec![0; 3], vec![0; 100]]
    )]
    fn test_vote_power_is_zero_when_stakers_are_staking_zero(staked_syms: Vec<u128>) {
        // Generate state for stakers
        let stakers = staked_syms
            .into_iter()
            .map(|e| (tmelcrypt::ed25519_keygen().1, e))
            .collect();
        let state = create_state(&stakers, 0);

        // Check the vote power of each staker in epoch 0 has expected value
        for (sk, _vote) in stakers.iter() {
            let vote_power = state.stakes.vote_power(0, sk.to_public());
            assert_eq!(vote_power, 0.0);
        }
    }

    #[test]
    fn test_remove_stale_all_stale() {
        let staked_syms: Vec<u128> = vec![0; 100];

        // Generate state for stakers
        let stakers = staked_syms
            .into_iter()
            .map(|e| (tmelcrypt::ed25519_keygen().1, e))
            .collect();
        let mut state = create_state(&stakers, 0);

        // All stakes should be stale past this epoch
        state.stakes.remove_stale(100000000000);

        for (_key, value) in state.stakes.mapping.iter() {
            assert_eq!(value.as_ref(), b"");
        }
    }

    #[test]
    fn test_remove_stale_no_stale() {
        let staked_syms: Vec<u128> = vec![0; 100];

        // Generate state for stakers
        let stakers = staked_syms
            .into_iter()
            .map(|e| (tmelcrypt::ed25519_keygen().1, e))
            .collect();
        let mut state = create_state(&stakers, 0);

        // No stakes should be stale past this epoch
        state.stakes.remove_stale(100);

        for (_key, value) in state.stakes.mapping.iter() {
            assert_ne!(value.as_ref(), b"");
        }
    }
}