1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
use super::CiphertextNoiseDegree;
use crate::core_crypto::algorithms::*;
use crate::core_crypto::entities::*;
use crate::shortint::ciphertext::Degree;
use crate::shortint::server_key::CheckError;
use crate::shortint::{Ciphertext, ServerKey};

impl ServerKey {
    /// Compute homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// This function, like all "default" operations (i.e. not smart, checked or unchecked), will
    /// check that the input ciphertext carries are empty and clears them if it's not the case and
    /// the operation requires it. It outputs a ciphertext whose carry is always empty.
    ///
    /// This means that when using only "default" operations, a given operation (like add for
    /// example) has always the same performance characteristics from one call to another and
    /// guarantees correctness by pre-emptively clearing carries of output ciphertexts.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 1_u64;
    /// let scalar = 3_u8;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.scalar_mul(&mut ct, scalar);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(msg * scalar as u64 % modulus, clear);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.scalar_mul(&mut ct, scalar);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(msg * scalar as u64 % modulus, clear);
    /// ```
    pub fn scalar_mul(&self, ct: &Ciphertext, scalar: u8) -> Ciphertext {
        let mut ct_res = ct.clone();
        self.scalar_mul_assign(&mut ct_res, scalar);
        ct_res
    }

    /// Compute homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// This function, like all "default" operations (i.e. not smart, checked or unchecked), will
    /// check that the input ciphertext carries are empty and clears them if it's not the case and
    /// the operation requires it. It outputs a ciphertext whose carry is always empty.
    ///
    /// This means that when using only "default" operations, a given operation (like add for
    /// example) has always the same performance characteristics from one call to another and
    /// guarantees correctness by pre-emptively clearing carries of output ciphertexts.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 1_u64;
    /// let scalar = 3_u8;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.scalar_mul_assign(&mut ct, scalar);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct);
    /// assert_eq!(
    ///     msg * scalar as u64 % cks.parameters.message_modulus().0 as u64,
    ///     clear
    /// );
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.scalar_mul_assign(&mut ct, scalar);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct);
    /// assert_eq!(
    ///     msg * scalar as u64 % cks.parameters.message_modulus().0 as u64,
    ///     clear
    /// );
    /// ```
    pub fn scalar_mul_assign(&self, ct: &mut Ciphertext, scalar: u8) {
        let acc = self.generate_msg_lookup_table(|x| scalar as u64 * x, self.message_modulus);
        self.apply_lookup_table_assign(ct, &acc);
    }

    /// Compute homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// The result is returned in a _new_ ciphertext.
    ///
    /// The operation is modulo the the precision bits to the power of two.
    ///
    /// This function does _not_ check whether the capacity of the ciphertext is exceeded.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.unchecked_scalar_mul(&ct, 3);
    ///
    /// let clear = cks.decrypt(&ct_res);
    /// assert_eq!(3, clear);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.unchecked_scalar_mul(&ct, 3);
    ///
    /// let clear = cks.decrypt(&ct_res);
    /// assert_eq!(3, clear);
    /// ```
    pub fn unchecked_scalar_mul(&self, ct: &Ciphertext, scalar: u8) -> Ciphertext {
        let mut ct_result = ct.clone();
        self.unchecked_scalar_mul_assign(&mut ct_result, scalar);

        ct_result
    }

    /// Compute homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// The result it stored in the given ciphertext.
    ///
    /// The operation is modulo the the precision bits to the power of two.
    ///
    /// This function does not check whether the capacity of the ciphertext is exceeded.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.unchecked_scalar_mul_assign(&mut ct, 3);
    ///
    /// let clear = cks.decrypt(&ct);
    /// assert_eq!(3, clear);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.unchecked_scalar_mul_assign(&mut ct, 3);
    ///
    /// let clear = cks.decrypt(&ct);
    /// assert_eq!(3, clear);
    /// ```
    pub fn unchecked_scalar_mul_assign(&self, ct: &mut Ciphertext, scalar: u8) {
        unchecked_scalar_mul_assign(ct, scalar);
    }

    /// Multiply one ciphertext with a scalar in the case the carry space cannot fit the product
    /// applying the message space modulus in the process.
    ///
    /// This is a bootstrapped operation.
    ///
    /// # Example
    ///
    ///```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let clear_1 = 1;
    /// let clear_2 = 2;
    ///
    /// // Encrypt two messages
    /// let mut ct_1 = cks.encrypt(clear_1);
    ///
    /// // Compute homomorphically a multiplication
    /// sks.unchecked_scalar_mul_lsb_small_carry_modulus_assign(&mut ct_1, clear_2 as u8);
    ///
    /// // Decrypt
    /// let res = cks.decrypt(&ct_1);
    /// assert_eq!(clear_2 * clear_1, res);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt two messages
    /// let mut ct_1 = cks.encrypt(clear_1);
    ///
    /// // Compute homomorphically a multiplication
    /// sks.unchecked_scalar_mul_lsb_small_carry_modulus_assign(&mut ct_1, clear_2 as u8);
    ///
    /// // Decrypt
    /// let res = cks.decrypt(&ct_1);
    /// assert_eq!(clear_2 * clear_1, res);
    /// ```
    pub fn unchecked_scalar_mul_lsb_small_carry_modulus_assign(
        &self,
        ct: &mut Ciphertext,
        scalar: u8,
    ) {
        // Modulus of the msg in the msg bits
        let modulus = ct.message_modulus.0 as u64;

        let acc_mul = self.generate_lookup_table(|x| (x.wrapping_mul(scalar as u64)) % modulus);

        self.apply_lookup_table_assign(ct, &acc_mul);
    }

    /// Verify if the ciphertext can be multiplied by a scalar.
    ///
    /// # Example
    ///
    ///```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(2);
    ///
    /// // Verification if the scalar multiplication can be computed:
    /// sks.is_scalar_mul_possible(ct.noise_degree(), 3).unwrap();
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(2);
    ///
    /// // Verification if the scalar multiplication can be computed:
    /// sks.is_scalar_mul_possible(ct.noise_degree(), 3).unwrap();
    /// ```
    pub fn is_scalar_mul_possible(
        &self,
        ct: CiphertextNoiseDegree,
        scalar: u8,
    ) -> Result<(), CheckError> {
        //scalar * ct.counter
        let final_degree = scalar as usize * ct.degree.get();

        self.max_degree.validate(Degree::new(final_degree))?;

        self.max_noise_level
            .validate(ct.noise_level * scalar as usize)?;

        Ok(())
    }

    /// Compute homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// If the operation is possible, the result is returned in a _new_ ciphertext.
    /// Otherwise a [CheckError] is returned.
    ///
    /// The operation is modulo the precision bits to the power of two.
    ///
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.checked_scalar_mul(&ct, 3).unwrap();
    ///
    /// let clear_res = cks.decrypt(&ct_res);
    /// assert_eq!(clear_res, 3);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.checked_scalar_mul(&ct, 3).unwrap();
    ///
    /// let clear_res = cks.decrypt(&ct_res);
    /// assert_eq!(clear_res, 3);
    /// ```
    pub fn checked_scalar_mul(
        &self,
        ct: &Ciphertext,
        scalar: u8,
    ) -> Result<Ciphertext, CheckError> {
        //If the ciphertext cannot be multiplied without exceeding the degree max
        self.is_scalar_mul_possible(ct.noise_degree(), scalar)?;
        let ct_result = self.unchecked_scalar_mul(ct, scalar);
        Ok(ct_result)
    }

    /// Compute homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// If the operation is possible, the result is stored _in_ the input ciphertext.
    /// Otherwise a [CheckError] is returned and the ciphertext is not .
    ///
    /// The operation is modulo the precision bits to the power of two.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.checked_scalar_mul_assign(&mut ct, 3).unwrap();
    ///
    /// let clear_res = cks.decrypt(&ct);
    /// assert_eq!(clear_res, 3);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(1);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.checked_scalar_mul_assign(&mut ct, 3).unwrap();
    ///
    /// let clear_res = cks.decrypt(&ct);
    /// assert_eq!(clear_res, 3);
    /// ```
    pub fn checked_scalar_mul_assign(
        &self,
        ct: &mut Ciphertext,
        scalar: u8,
    ) -> Result<(), CheckError> {
        self.is_scalar_mul_possible(ct.noise_degree(), scalar)?;
        self.unchecked_scalar_mul_assign(ct, scalar);
        Ok(())
    }

    /// Compute homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// This checks that the multiplication is possible. In the case where the carry buffers are
    /// full, then it is automatically cleared to allow the operation.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 1_u64;
    /// let scalar = 3_u8;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.smart_scalar_mul(&mut ct, scalar);
    ///
    /// // The input ciphertext content is not changed
    /// assert_eq!(cks.decrypt(&ct), msg);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(3, clear % modulus);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// let ct_res = sks.smart_scalar_mul(&mut ct, scalar);
    ///
    /// // The input ciphertext content is not changed
    /// assert_eq!(cks.decrypt(&ct), msg);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(3, clear % modulus);
    /// ```
    #[allow(clippy::needless_pass_by_ref_mut)]
    pub fn smart_scalar_mul(&self, ct: &mut Ciphertext, scalar: u8) -> Ciphertext {
        let mut ct_result = ct.clone();
        self.smart_scalar_mul_assign(&mut ct_result, scalar);

        ct_result
    }

    /// Compute homomorphically a multiplication of a ciphertext by a scalar.
    ///
    /// This checks that the multiplication is possible. In the case where the carry buffers are
    /// full, then it is automatically cleared to allow the operation.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 1_u64;
    /// let scalar = 3_u8;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.smart_scalar_mul_assign(&mut ct, scalar);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct);
    /// assert_eq!(3, clear);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a scalar multiplication:
    /// sks.smart_scalar_mul_assign(&mut ct, scalar);
    ///
    /// // Our result is what we expect
    /// let clear = cks.decrypt(&ct);
    /// assert_eq!(3, clear);
    /// ```
    pub fn smart_scalar_mul_assign(&self, ct: &mut Ciphertext, scalar: u8) {
        // Direct scalar computation is possible
        if self
            .is_scalar_mul_possible(ct.noise_degree(), scalar)
            .is_ok()
        {
            self.unchecked_scalar_mul_assign(ct, scalar);
            ct.degree = Degree::new(ct.degree.get() * scalar as usize);
        }
        // If the ciphertext cannot be multiplied without exceeding the degree max
        else {
            self.evaluate_msg_univariate_function_assign(ct, |x| scalar as u64 * x);
            ct.degree = Degree::new(self.message_modulus.0 - 1);
        }
    }
}

pub(crate) fn unchecked_scalar_mul_assign(ct: &mut Ciphertext, scalar: u8) {
    ct.set_noise_level(ct.noise_level() * scalar as usize);
    ct.degree = Degree::new(ct.degree.get() * scalar as usize);

    match scalar {
        0 => {
            trivially_encrypt_lwe_ciphertext(&mut ct.ct, Plaintext(0));
        }
        1 => {
            // Multiplication by one is the identidy
        }
        scalar => {
            let scalar = u64::from(scalar);
            let cleartext_scalar = Cleartext(scalar);
            lwe_ciphertext_cleartext_mul_assign(&mut ct.ct, cleartext_scalar);
        }
    }
}