1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
use super::CiphertextNoiseDegree;
use crate::core_crypto::algorithms::*;
use crate::core_crypto::entities::*;
use crate::shortint::ciphertext::Degree;
use crate::shortint::server_key::CheckError;
use crate::shortint::{Ciphertext, ServerKey};

impl ServerKey {
    /// Compute homomorphically a negation of a ciphertext.
    ///
    /// This checks that the negation is possible. In the case where the carry buffers are full,
    /// then it is automatically cleared to allow the operation.
    ///
    /// This function, like all "default" operations (i.e. not smart, checked or unchecked), will
    /// check that the input ciphertext carries are empty and clears them if it's not the case and
    /// the operation requires it. It outputs a ciphertext whose carry is always empty.
    ///
    /// This means that when using only "default" operations, a given operation (like add for
    /// example) has always the same performance characteristics from one call to another and
    /// guarantees correctness by pre-emptively clearing carries of output ciphertexts.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 3;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// let ct_res = sks.neg(&mut ct);
    ///
    /// // Decrypt
    /// let clear_res = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// let ct_res = sks.neg(&mut ct);
    ///
    /// // Decrypt
    /// let clear_res = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    /// ```
    pub fn neg(&self, ct: &Ciphertext) -> Ciphertext {
        let mut ct_res = ct.clone();
        self.neg_assign(&mut ct_res);
        ct_res
    }

    /// Compute homomorphically a negation of a ciphertext.
    ///
    /// This checks that the negation is possible. In the case where the carry buffers are full,
    /// then it is automatically cleared to allow the operation.
    ///
    /// This function, like all "default" operations (i.e. not smart, checked or unchecked), will
    /// check that the input ciphertext carries are empty and clears them if it's not the case and
    /// the operation requires it. It outputs a ciphertext whose carry is always empty.
    ///
    /// This means that when using only "default" operations, a given operation (like add for
    /// example) has always the same performance characteristics from one call to another and
    /// guarantees correctness by pre-emptively clearing carries of output ciphertexts.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 3;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// sks.neg_assign(&mut ct);
    ///
    /// // Decrypt
    /// let clear_res = cks.decrypt(&ct);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// sks.neg_assign(&mut ct);
    ///
    /// // Decrypt
    /// let clear_res = cks.decrypt(&ct);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    /// ```
    pub fn neg_assign(&self, ct: &mut Ciphertext) {
        if !ct.carry_is_empty() {
            self.message_extract_assign(ct);
        }
        self.unchecked_neg_assign(ct);
        self.message_extract_assign(ct);
    }

    /// Homomorphically negates a message without checks.
    ///
    /// Negation here means the opposite value in the modulo set.
    ///
    /// This function computes the opposite of a message without checking if it exceeds the
    /// capacity of the ciphertext.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 1;
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// let mut ct_res = sks.unchecked_neg(&ct);
    ///
    /// // Decrypt
    /// let three = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(modulus - msg, three);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// let mut ct_res = sks.unchecked_neg(&ct);
    ///
    /// // Decrypt
    /// let three = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(modulus - msg, three);
    /// ```
    pub fn unchecked_neg(&self, ct: &Ciphertext) -> Ciphertext {
        let mut result = ct.clone();
        self.unchecked_neg_assign(&mut result);
        result
    }

    pub fn unchecked_neg_with_correcting_term(&self, ct: &Ciphertext) -> (Ciphertext, u64) {
        let mut result = ct.clone();
        let z = self.unchecked_neg_assign_with_correcting_term(&mut result);
        (result, z)
    }

    /// Homomorphically negates a message inplace without checks.
    ///
    /// Negation here means the opposite value in the modulo set.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 3;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// sks.unchecked_neg_assign(&mut ct);
    ///
    /// // Decrypt
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(modulus - msg, cks.decrypt(&ct));
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// sks.unchecked_neg_assign(&mut ct);
    ///
    /// // Decrypt
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(modulus - msg, cks.decrypt(&ct));
    /// ```
    pub fn unchecked_neg_assign(&self, ct: &mut Ciphertext) {
        let _z = self.unchecked_neg_assign_with_correcting_term(ct);
    }

    pub fn unchecked_neg_assign_with_correcting_term(&self, ct: &mut Ciphertext) -> u64 {
        // z = ceil( degree / 2^p ) * 2^p
        let msg_mod = ct.message_modulus.0;
        // Ensure z is always >= 1 (which would not be the case if degree == 0)
        // some algorithms (e.g. overflowing_sub) require this even for trivial zeros
        let mut z = ct.degree.get().div_ceil(msg_mod).max(1) as u64;
        z *= msg_mod as u64;

        // Value of the shift we multiply our messages by
        let delta = (1_u64 << 63) / (self.message_modulus.0 * self.carry_modulus.0) as u64;

        //Scaling + 1 on the padding bit
        let w = Plaintext(z * delta);

        // (0,Delta*z) - ct
        lwe_ciphertext_opposite_assign(&mut ct.ct);

        lwe_ciphertext_plaintext_add_assign(&mut ct.ct, w);

        // Update the degree
        ct.degree = Degree::new(z as usize);

        z
    }

    /// Verify if a ciphertext can be negated.
    ///
    /// # Example
    ///
    ///```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 2;
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(msg);
    ///
    /// // Check if we can perform a negation
    /// let can_be_negated = sks.is_neg_possible(ct.noise_degree()).unwrap();
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(msg);
    ///
    /// // Check if we can perform a negation
    /// let can_be_negated = sks.is_neg_possible(ct.noise_degree()).unwrap();
    /// ```
    pub fn is_neg_possible(&self, ct: CiphertextNoiseDegree) -> Result<(), CheckError> {
        // z = ceil( degree / 2^p ) x 2^p
        let msg_mod = self.message_modulus.0;
        let mut z = (ct.degree.get() + msg_mod - 1) / msg_mod;
        z = z.wrapping_mul(msg_mod);

        self.max_degree.validate(Degree::new(z))
    }

    /// Compute homomorphically a negation of a ciphertext.
    ///
    /// If the operation can be performed, the result is returned a _new_ ciphertext.
    /// Otherwise a [CheckError] is returned.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 1;
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation:
    /// let ct_res = sks.checked_neg(&ct).unwrap();
    ///
    /// let clear_res = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation:
    /// let ct_res = sks.checked_neg(&ct).unwrap();
    ///
    /// let clear_res = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    /// ```
    pub fn checked_neg(&self, ct: &Ciphertext) -> Result<Ciphertext, CheckError> {
        // If the ciphertext cannot be negated without exceeding the capacity of a ciphertext
        self.is_neg_possible(ct.noise_degree())?;
        let ct_result = self.unchecked_neg(ct);
        Ok(ct_result)
    }

    /// Compute homomorphically a negation of a ciphertext.
    ///
    /// If the operation is possible, the result is stored _in_ the input ciphertext.
    /// Otherwise a [CheckError] is returned and the ciphertext is not .
    ///
    ///
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 1;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically the negation:
    /// sks.checked_neg_assign(&mut ct).unwrap();
    ///
    /// let clear_res = cks.decrypt(&ct);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically the negation:
    /// sks.checked_neg_assign(&mut ct).unwrap();
    ///
    /// let clear_res = cks.decrypt(&ct);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    /// ```
    pub fn checked_neg_assign(&self, ct: &mut Ciphertext) -> Result<(), CheckError> {
        self.is_neg_possible(ct.noise_degree())?;
        self.unchecked_neg_assign(ct);
        Ok(())
    }

    /// Compute homomorphically a negation of a ciphertext.
    ///
    /// This checks that the negation is possible. In the case where the carry buffers are full,
    /// then it is automatically cleared to allow the operation.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 3;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// let ct_res = sks.smart_neg(&mut ct);
    ///
    /// // Decrypt
    /// let clear_res = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// let ct_res = sks.smart_neg(&mut ct);
    ///
    /// // Decrypt
    /// let clear_res = cks.decrypt(&ct_res);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    /// ```
    pub fn smart_neg(&self, ct: &mut Ciphertext) -> Ciphertext {
        // If the ciphertext cannot be negated without exceeding the capacity of a ciphertext
        if self.is_neg_possible(ct.noise_degree()).is_err() {
            self.message_extract_assign(ct);
        }

        self.is_neg_possible(ct.noise_degree()).unwrap();

        self.unchecked_neg(ct)
    }

    /// Compute homomorphically a negation of a ciphertext.
    ///
    /// This checks that the addition is possible. In the case where the carry buffers are full,
    /// then it is automatically cleared to allow the operation.
    /// # Example
    ///
    /// ```rust
    /// use tfhe::shortint::gen_keys;
    /// use tfhe::shortint::parameters::{
    ///     PARAM_MESSAGE_2_CARRY_2_KS_PBS, PARAM_MESSAGE_2_CARRY_2_PBS_KS,
    /// };
    ///
    /// // Generate the client key and the server key:
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_KS_PBS);
    ///
    /// let msg = 3;
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// sks.smart_neg_assign(&mut ct);
    ///
    /// // Decrypt
    /// let clear_res = cks.decrypt(&ct);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    ///
    /// let (cks, sks) = gen_keys(PARAM_MESSAGE_2_CARRY_2_PBS_KS);
    ///
    /// // Encrypt a message
    /// let mut ct = cks.encrypt(msg);
    ///
    /// // Compute homomorphically a negation
    /// sks.smart_neg_assign(&mut ct);
    ///
    /// // Decrypt
    /// let clear_res = cks.decrypt(&ct);
    /// let modulus = cks.parameters.message_modulus().0 as u64;
    /// assert_eq!(clear_res, modulus - msg);
    /// ```
    pub fn smart_neg_assign(&self, ct: &mut Ciphertext) {
        // If the ciphertext cannot be negated without exceeding the capacity of a ciphertext
        if self.is_neg_possible(ct.noise_degree()).is_err() {
            self.message_extract_assign(ct);
        }
        self.is_neg_possible(ct.noise_degree()).unwrap();
        self.unchecked_neg_assign(ct);
    }
}