1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
//! Functions and types relating to shader programs.

use std::cell::{Cell, RefCell};
use std::path::Path;
use std::rc::Rc;
use std::slice;

use hashbrown::HashMap;

use crate::error::Result;
use crate::fs;
use crate::graphics::{Color, Texture};
use crate::math::{Mat2, Mat3, Mat4, Vec2, Vec3, Vec4};
use crate::platform::{GraphicsDevice, RawShader};
use crate::Context;

/// The default vertex shader.
///
/// The source code for this shader is available in [`src/resources/shader.vert`](https://github.com/17cupsofcoffee/tetra/blob/main/src/resources/shader.vert).
pub const DEFAULT_VERTEX_SHADER: &str = include_str!("../resources/shader.vert");

/// The default fragment shader.
///
/// The source code for this shader is available in [`src/resources/shader.vert`](https://github.com/17cupsofcoffee/tetra/blob/main/src/resources/shader.frag).
pub const DEFAULT_FRAGMENT_SHADER: &str = include_str!("../resources/shader.frag");

#[derive(Debug)]
pub(crate) struct Sampler {
    pub(crate) texture: Texture,
    pub(crate) unit: u32,
}

#[derive(Debug)]
pub(crate) struct ShaderSharedData {
    pub(crate) handle: RawShader,
    pub(crate) samplers: RefCell<HashMap<String, Sampler>>,
    pub(crate) next_unit: Cell<u32>,
}

impl PartialEq for ShaderSharedData {
    fn eq(&self, other: &ShaderSharedData) -> bool {
        self.handle.eq(&other.handle)
    }
}

/// A shader program, consisting of a vertex shader and a fragment shader.
///
/// # Data Format
///
/// Shaders are written using [GLSL](https://en.wikipedia.org/wiki/OpenGL_Shading_Language).
///
/// ## Vertex Shaders
///
/// Vertex shaders take in data via three attributes:
///
/// * `a_position` - A `vec2` representing the position of the vertex in world space.
/// * `a_uv` - A `vec2` representing the texture co-ordinates that are associated with the vertex.
/// * `a_color` - A `vec4` representing the color of the vertex. This will be multiplied by
///   `u_diffuse` and the color sampled from `u_texture` (see 'Uniforms' below).
///
/// Position data should be output as a `vec4` to the built-in `gl_Position` variable.
///
/// ## Fragment Shaders
///
/// Color data should be output as a `vec4` to the first output of the shader. This can be the
/// built-in `gl_FragColor` variable, if you so desire.
///
/// ## Uniforms
///
/// By default, the shader is provided with three uniform variables:
///
/// * `u_projection` - A `mat4` which can be used to translate world space co-ordinates into screen space.
/// * `u_texture` - A `sampler2D` which can be used to access color data from the currently active texture.
/// * `u_diffuse` - A `vec4` representing the color of the current geometry. This is currently only used to
///   pass through the [`DrawParams::color`](super::DrawParams::color) for a [`Mesh`](super::mesh::Mesh), and will
///   otherwise be set to [`Color::WHITE`].
///
/// You can also set data into your own uniform variables via the [`set_uniform`](Shader::set_uniform) method.
///
/// Bear in mind that there is a hardware-defined limit on how many uniform locations can be used
/// per shader. OpenGL 3.0 guarantees there will be at least 1024 of these locations available,
/// which sounds like a lot - however, some types can use up multiple locations (e.g. a `vec2`
/// uses 2, a `mat4` uses 16, an array of 4 `mat4`s uses 64, and so on).
///
/// # Performance
///
/// Creating a shader is quite an expensive operation, as it involves parsing and validating the GLSL code.
/// Try to reuse shaders, rather than recreating them every frame.
///
/// You can clone a shader cheaply, as it is a [reference-counted](https://doc.rust-lang.org/std/rc/struct.Rc.html)
/// handle to a GPU resource. However, this does mean that modifying a shader (e.g.
/// setting a uniform) will also affect any clones that exist of it.
///
/// # Examples
///
/// The [`shaders`](https://github.com/17cupsofcoffee/tetra/blob/main/examples/shaders.rs)
/// example demonstrates how to draw using a custom shader, supplying inputs via uniform
/// variables.
#[derive(Debug, Clone, PartialEq)]
pub struct Shader {
    pub(crate) data: Rc<ShaderSharedData>,
}

impl Shader {
    /// Creates a new shader program from the given files.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be returned if the
    /// underlying graphics API encounters an error.
    /// * [`TetraError::FailedToLoadAsset`](crate::TetraError::FailedToLoadAsset) will be returned
    /// if the files could not be loaded.
    /// * [`TetraError::InvalidShader`](crate::TetraError::InvalidShader) will be returned if the
    /// shader could not be compiled.
    pub fn new<P>(ctx: &mut Context, vertex_path: P, fragment_path: P) -> Result<Shader>
    where
        P: AsRef<Path>,
    {
        Shader::with_device(
            &mut ctx.device,
            &fs::read_to_string(vertex_path)?,
            &fs::read_to_string(fragment_path)?,
        )
    }

    /// Creates a new shader program from the given vertex shader file.
    ///
    /// The default fragment shader will be used.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be returned if the
    /// underlying graphics API encounters an error.
    /// * [`TetraError::FailedToLoadAsset`](crate::TetraError::FailedToLoadAsset) will be returned
    /// if the file could not be loaded.
    /// * [`TetraError::InvalidShader`](crate::TetraError::InvalidShader) will be returned if the
    /// shader could not be compiled.
    pub fn from_vertex_file<P>(ctx: &mut Context, path: P) -> Result<Shader>
    where
        P: AsRef<Path>,
    {
        Shader::with_device(
            &mut ctx.device,
            &fs::read_to_string(path)?,
            DEFAULT_FRAGMENT_SHADER,
        )
    }

    /// Creates a new shader program from the given fragment shader file.
    ///
    /// The default vertex shader will be used.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be returned if the
    /// underlying graphics API encounters an error.
    /// * [`TetraError::FailedToLoadAsset`](crate::TetraError::FailedToLoadAsset) will be returned
    /// if the file could not be loaded.
    /// * [`TetraError::InvalidShader`](crate::TetraError::InvalidShader) will be returned if the
    /// shader could not be compiled.
    pub fn from_fragment_file<P>(ctx: &mut Context, path: P) -> Result<Shader>
    where
        P: AsRef<Path>,
    {
        Shader::with_device(
            &mut ctx.device,
            DEFAULT_VERTEX_SHADER,
            &fs::read_to_string(path)?,
        )
    }

    /// Creates a new shader program from the given strings.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be returned if the
    /// underlying graphics API encounters an error.
    /// * [`TetraError::InvalidShader`](crate::TetraError::InvalidShader) will be returned if the
    /// shader could not be compiled.
    pub fn from_string(
        ctx: &mut Context,
        vertex_shader: &str,
        fragment_shader: &str,
    ) -> Result<Shader> {
        Shader::with_device(&mut ctx.device, vertex_shader, fragment_shader)
    }

    /// Creates a new shader program from the given vertex shader string.
    ///
    /// The default fragment shader will be used.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be returned if the
    /// underlying graphics API encounters an error.
    /// * [`TetraError::InvalidShader`](crate::TetraError::InvalidShader) will be returned if the
    /// shader could not be compiled.
    pub fn from_vertex_string(ctx: &mut Context, shader: &str) -> Result<Shader> {
        Shader::with_device(&mut ctx.device, shader, DEFAULT_FRAGMENT_SHADER)
    }

    /// Creates a new shader program from the given fragment shader string.
    ///
    /// The default vertex shader will be used.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`](crate::TetraError::PlatformError) will be returned if the
    /// underlying graphics API encounters an error.
    /// * [`TetraError::InvalidShader`](crate::TetraError::InvalidShader) will be returned if the
    /// shader could not be compiled.
    pub fn from_fragment_string(ctx: &mut Context, shader: &str) -> Result<Shader> {
        Shader::with_device(&mut ctx.device, DEFAULT_VERTEX_SHADER, shader)
    }

    pub(crate) fn with_device(
        device: &mut GraphicsDevice,
        vertex_shader: &str,
        fragment_shader: &str,
    ) -> Result<Shader> {
        let handle = device.new_shader(vertex_shader, fragment_shader)?;

        Ok(Shader {
            data: Rc::new(ShaderSharedData {
                handle,
                samplers: RefCell::new(HashMap::new()),
                next_unit: Cell::new(1),
            }),
        })
    }

    /// Sets the value of the specifed uniform parameter.
    ///
    /// See the [`UniformValue`] trait's docs for a list of which types can be used as a uniform,
    /// and what their corresponding GLSL types are.
    pub fn set_uniform<V>(&self, ctx: &mut Context, name: &str, value: V)
    where
        V: UniformValue,
    {
        value.set_uniform(ctx, self, name)
    }

    pub(crate) fn set_default_uniforms(
        &self,
        device: &mut GraphicsDevice,
        projection: Mat4<f32>,
        diffuse: Color,
    ) -> Result {
        let samplers = self.data.samplers.borrow();

        for sampler in samplers.values() {
            device.attach_texture_to_sampler(&sampler.texture.data.handle, sampler.unit)?;
        }

        let projection_location = device.get_uniform_location(&self.data.handle, "u_projection");

        device.set_uniform_mat4(
            &self.data.handle,
            projection_location.as_ref(),
            &[projection],
        );

        let diffuse_location = device.get_uniform_location(&self.data.handle, "u_diffuse");

        device.set_uniform_vec4(
            &self.data.handle,
            diffuse_location.as_ref(),
            &[diffuse.into()],
        );

        Ok(())
    }
}

/// Implemented for types that can be passed as a uniform value to a shader.
///
/// As the implementation of this trait currently interacts directly with the platform layer,
/// it cannot be implemented outside of Tetra itself. This may change in the future!
pub trait UniformValue {
    #[doc(hidden)]
    fn set_uniform(&self, ctx: &mut Context, shader: &Shader, name: &str);
}

macro_rules! simple_uniforms {
    ($($t:ty => $f:ident, $doc:expr, $arraydoc:expr),* $(,)?) => {
        $(
            #[doc = $doc]
            impl UniformValue for $t {
                #[doc(hidden)]
                 fn set_uniform(
                    &self,
                    ctx: &mut Context,
                    shader: &Shader,
                    name: &str,
                ) {
                    let location = ctx.device.get_uniform_location(&shader.data.handle, name);
                    ctx.device.$f(&shader.data.handle, location.as_ref(), slice::from_ref(self));
                }
            }

            #[doc = $arraydoc]
            impl UniformValue for &[$t] {
                #[doc(hidden)]
                 fn set_uniform(
                    &self,
                    ctx: &mut Context,
                    shader: &Shader,
                    name: &str,
                ) {
                    let location = ctx.device.get_uniform_location(&shader.data.handle, name);
                    ctx.device.$f(&shader.data.handle, location.as_ref(), self);
                }
            }

            #[doc = $arraydoc]
            impl<const N: usize> UniformValue for [$t; N] {
                #[doc(hidden)]
                 fn set_uniform(
                    &self,
                    ctx: &mut Context,
                    shader: &Shader,
                    name: &str,
                ) {
                    let location = ctx.device.get_uniform_location(&shader.data.handle, name);
                    ctx.device.$f(&shader.data.handle, location.as_ref(), self);
                }
            }
        )*
    };
}

simple_uniforms! {
    i32 => set_uniform_i32, "Can be accessed as an `int` in your shader.", "Can be accessed as an array of `int`s in your shader.",
    u32 => set_uniform_u32, "Can be accessed as a `uint` in your shader.", "Can be accessed as an array of `uint`s in your shader.",
    f32 => set_uniform_f32, "Can be accessed as a `float` in your shader.", "Can be accessed as an array of `float`s in your shader.",
    Vec2<f32> => set_uniform_vec2, "Can be accessed as a `vec2` in your shader.", "Can be accessed as an array of `vec2`s in your shader.",
    Vec3<f32> => set_uniform_vec3, "Can be accessed as a `vec3` in your shader.", "Can be accessed as an array of `vec3`s in your shader.",
    Vec4<f32> => set_uniform_vec4, "Can be accessed as a `vec4` in your shader.", "Can be accessed as an array of `vec4`s in your shader.",
    Mat2<f32> => set_uniform_mat2, "Can be accessed as a `mat2` in your shader.", "Can be accessed as an array of `mat2`s in your shader.",
    Mat3<f32> => set_uniform_mat3, "Can be accessed as a `mat3` in your shader.", "Can be accessed as an array of `mat3`s in your shader.",
    Mat4<f32> => set_uniform_mat4, "Can be accessed as a `mat4` in your shader.", "Can be accessed as an array of `mat4`s in your shader.",
    Color => set_uniform_color, "Can be accessed as a `vec4` in your shader.", "Can be accessed as an array of `vec4`s in your shader.",
}

/// Can be accessed via a `sampler2D` in your shader.
impl UniformValue for Texture {
    #[doc(hidden)]
    fn set_uniform(&self, ctx: &mut Context, shader: &Shader, name: &str) {
        let mut samplers = shader.data.samplers.borrow_mut();

        if let Some(sampler) = samplers.get_mut(name) {
            if sampler.texture != *self {
                sampler.texture = self.clone();
            }
        } else {
            let next_unit = shader.data.next_unit.get();

            samplers.insert(
                name.to_owned(),
                Sampler {
                    texture: self.clone(),
                    unit: next_unit,
                },
            );

            // Sampler uniforms have to be set via glUniform1i
            (next_unit as i32).set_uniform(ctx, shader, name);

            shader.data.next_unit.set(next_unit + 1);
        }
    }
}

/// Any type that can be passed by value to a shader can also be passed by reference.
impl<'a, T> UniformValue for &'a T
where
    T: UniformValue,
{
    #[doc(hidden)]
    fn set_uniform(&self, ctx: &mut Context, shader: &Shader, name: &str) {
        {
            let inner = *self;
            inner.set_uniform(ctx, shader, name);
        }
    }
}