1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
//! Functions and types relating to textures.

use std::cell::Cell;
use std::path::Path;
use std::rc::Rc;

use crate::error::{Result, TetraError};
use crate::fs;
use crate::graphics::{self, DrawParams, Rectangle};
use crate::platform::{GraphicsDevice, RawTexture};
use crate::Context;

#[derive(Debug)]
pub(crate) struct TextureSharedData {
    pub(crate) handle: RawTexture,
    filter_mode: Cell<FilterMode>,
}

impl PartialEq for TextureSharedData {
    fn eq(&self, other: &TextureSharedData) -> bool {
        // filter_mode should always match what's set on the GPU,
        // so we can ignore it for equality checks.

        self.handle.eq(&other.handle)
    }
}

/// A texture, held in GPU memory.
///
/// # Supported Formats
///
/// Various file formats are supported, and can be enabled or disabled via Cargo features:
///
/// | Format | Cargo feature | Enabled by default? |
/// |-|-|-|
/// | PNG | `texture_png` | Yes |
/// | JPEG | `texture_jpeg` | Yes |
/// | GIF | `texture_gif` | Yes |
/// | BMP | `texture_bmp` | Yes |
/// | TIFF | `texture_tiff` | No |
/// | TGA | `texture_tga` | No |
/// | WebP | `texture_webp` | No |
/// | ICO | `texture_ico` | No |
/// | PNM | `texture_pnm` | No |
/// | DDS/DXT | `texture_dds` | No |
///
/// # Performance
///
/// Creating a `Texture` is a relatively expensive operation. If you can, store them in your
/// [`State`](crate::State) struct rather than recreating them each frame.
///
/// Cloning a `Texture` is a very cheap operation, as the underlying data is shared between the
/// original instance and the clone via [reference-counting](https://doc.rust-lang.org/std/rc/struct.Rc.html).
/// This does mean, however, that updating a `Texture` (for example, changing its filter mode) will also
/// update any other clones of that `Texture`.
///
/// # Examples
///
/// The [`texture`](https://github.com/17cupsofcoffee/tetra/blob/main/examples/texture.rs)
/// example demonstrates how to draw a simple texture.
#[derive(Debug, Clone, PartialEq)]
pub struct Texture {
    pub(crate) data: Rc<TextureSharedData>,
}

impl Texture {
    /// Creates a new texture from the given file.
    ///
    /// The format will be determined based on the file extension.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`] will be returned if the underlying graphics API encounters an error.
    /// * [`TetraError::FailedToLoadAsset`] will be returned if the file could not be loaded.
    /// * [`TetraError::InvalidTexture`] will be returned if the texture data was invalid.
    pub fn new<P>(ctx: &mut Context, path: P) -> Result<Texture>
    where
        P: AsRef<Path>,
    {
        let image = fs::read_to_image(path)?.to_rgba8();
        let (width, height) = image.dimensions();

        Texture::from_rgba(
            ctx,
            width as i32,
            height as i32,
            image.into_raw().as_slice(),
        )
    }

    /// Creates a new texture from a slice of data, encoded in one of Tetra's supported
    /// file formats (except for TGA).
    ///
    /// This is useful in combination with [`include_bytes`](std::include_bytes), as it
    /// allows you to include your textures directly in the binary.
    ///
    /// The format will be determined based on the 'magic bytes' at the beginning of the
    /// data. This should be reasonably reliable, but a `from_data_with_format` function
    /// might have to be added later. Note that TGA files do not have recognizable magic
    /// bytes, so this function will not recognize them.
    ///
    /// # Errors
    ///
    /// * [`TetraError::PlatformError`] will be returned if the underlying graphics API encounters an error.
    /// * [`TetraError::InvalidTexture`] will be returned if the texture data was invalid.
    pub fn from_file_data(ctx: &mut Context, data: &[u8]) -> Result<Texture> {
        let image = image::load_from_memory(data)
            .map_err(TetraError::InvalidTexture)?
            .to_rgba8();

        let (width, height) = image.dimensions();

        Texture::from_rgba(
            ctx,
            width as i32,
            height as i32,
            image.into_raw().as_slice(),
        )
    }

    /// Creates a new texture from a slice of RGBA pixel data.
    ///
    /// This is useful if you wish to create a texture at runtime.
    ///
    /// This method requires you to provide enough data to fill the texture.
    /// If you provide too little data, an error will be returned.
    /// If you provide too much data, it will be truncated.
    ///
    /// # Errors
    ///
    /// * [`TetraError::NotEnoughData`] will be returned if not enough data is provided to fill
    /// the texture. This is to prevent the graphics API from trying to read uninitialized memory.
    pub fn from_rgba(ctx: &mut Context, width: i32, height: i32, data: &[u8]) -> Result<Texture> {
        Texture::with_device(
            &mut ctx.device,
            width,
            height,
            data,
            ctx.graphics.default_filter_mode,
        )
    }

    pub(crate) fn with_device(
        device: &mut GraphicsDevice,
        width: i32,
        height: i32,
        data: &[u8],
        filter_mode: FilterMode,
    ) -> Result<Texture> {
        let handle = device.new_texture(width, height)?;

        device.set_texture_data(&handle, &data, 0, 0, width, height)?;
        device.set_texture_filter_mode(&handle, filter_mode);

        Ok(Texture {
            data: Rc::new(TextureSharedData {
                handle,
                filter_mode: Cell::new(FilterMode::Linear),
            }),
        })
    }

    pub(crate) fn with_device_empty(
        device: &mut GraphicsDevice,
        width: i32,
        height: i32,
        filter_mode: FilterMode,
    ) -> Result<Texture> {
        let handle = device.new_texture(width, height)?;
        device.set_texture_filter_mode(&handle, filter_mode);

        Ok(Texture {
            data: Rc::new(TextureSharedData {
                handle,
                filter_mode: Cell::new(filter_mode),
            }),
        })
    }

    /// Draws the texture to the screen (or to a canvas, if one is enabled).
    pub fn draw<P>(&self, ctx: &mut Context, params: P)
    where
        P: Into<DrawParams>,
    {
        let params = params.into();

        graphics::set_texture(ctx, self);
        graphics::push_quad(
            ctx,
            0.0,
            0.0,
            self.width() as f32,
            self.height() as f32,
            0.0,
            0.0,
            1.0,
            1.0,
            &params,
        );
    }

    /// Draws a region of the texture to the screen (or to a canvas, if one is enabled).
    pub fn draw_region<P>(&self, ctx: &mut Context, region: Rectangle, params: P)
    where
        P: Into<DrawParams>,
    {
        let params = params.into();

        let texture_width = self.width() as f32;
        let texture_height = self.height() as f32;

        graphics::set_texture(ctx, self);
        graphics::push_quad(
            ctx,
            0.0,
            0.0,
            region.width,
            region.height,
            region.x / texture_width,
            region.y / texture_height,
            region.right() / texture_width,
            region.bottom() / texture_height,
            &params,
        );
    }

    /// Draws a region of the texture by splitting it into nine slices, allowing it to be stretched or
    /// squashed without distorting the borders.
    pub fn draw_nine_slice<P>(
        &self,
        ctx: &mut Context,
        config: &NineSlice,
        width: f32,
        height: f32,
        params: P,
    ) where
        P: Into<DrawParams>,
    {
        let params = params.into();

        let texture_width = self.width() as f32;
        let texture_height = self.height() as f32;

        let x1 = 0.0;
        let y1 = 0.0;
        let x2 = config.left;
        let y2 = config.top;
        let x3 = width - config.right;
        let y3 = height - config.bottom;
        let x4 = width;
        let y4 = height;

        let u1 = config.region.x / texture_width;
        let v1 = config.region.y / texture_height;
        let u2 = (config.region.x + config.left) / texture_width;
        let v2 = (config.region.y + config.top) / texture_height;
        let u3 = (config.region.x + config.region.width - config.right) / texture_width;
        let v3 = (config.region.y + config.region.height - config.bottom) / texture_height;
        let u4 = (config.region.x + config.region.width) / texture_width;
        let v4 = (config.region.y + config.region.height) / texture_height;

        graphics::set_texture(ctx, self);

        // Top left
        graphics::push_quad(ctx, x1, y1, x2, y2, u1, v1, u2, v2, &params);

        // Top
        graphics::push_quad(ctx, x2, y1, x3, y2, u2, v1, u3, v2, &params);

        // Top right
        graphics::push_quad(ctx, x3, y1, x4, y2, u3, v1, u4, v2, &params);

        // Left
        graphics::push_quad(ctx, x1, y2, x2, y3, u1, v2, u2, v3, &params);

        // Center
        graphics::push_quad(ctx, x2, y2, x3, y3, u2, v2, u3, v3, &params);

        // Right
        graphics::push_quad(ctx, x3, y2, x4, y3, u3, v2, u4, v3, &params);

        // Bottom left
        graphics::push_quad(ctx, x1, y3, x2, y4, u1, v3, u2, v4, &params);

        // Bottom
        graphics::push_quad(ctx, x2, y3, x3, y4, u2, v3, u3, v4, &params);

        // Bottom right
        graphics::push_quad(ctx, x3, y3, x4, y4, u3, v3, u4, v4, &params);
    }

    /// Returns the width of the texture.
    pub fn width(&self) -> i32 {
        self.data.handle.width()
    }

    /// Returns the height of the texture.
    pub fn height(&self) -> i32 {
        self.data.handle.height()
    }

    /// Returns the size of the canvas.
    pub fn size(&self) -> (i32, i32) {
        (self.data.handle.width(), self.data.handle.height())
    }

    /// Returns the filter mode being used by the texture.
    pub fn filter_mode(&self) -> FilterMode {
        self.data.filter_mode.get()
    }

    /// Sets the filter mode that should be used by the texture.
    pub fn set_filter_mode(&mut self, ctx: &mut Context, filter_mode: FilterMode) {
        ctx.device
            .set_texture_filter_mode(&self.data.handle, filter_mode);

        self.data.filter_mode.set(filter_mode);
    }

    /// Writes RGBA pixel data to a specified region of the texture.
    ///
    /// This method requires you to provide enough data to fill the target rectangle.
    /// If you provide too little data, an error will be returned.
    /// If you provide too much data, it will be truncated.
    ///
    /// If you want to overwrite the entire texture, the [`replace_data`](Self::replace_data)
    /// method offers a more concise way of doing this.
    ///
    /// # Errors
    ///
    /// * [`TetraError::NotEnoughData`] will be returned if not enough data is provided to fill
    /// the target rectangle. This is to prevent the graphics API from trying to read
    /// uninitialized memory.
    ///
    /// # Panics
    ///
    /// Panics if any part of the target rectangle is outside the bounds of the texture.
    pub fn set_data(
        &self,
        ctx: &mut Context,
        x: i32,
        y: i32,
        width: i32,
        height: i32,
        data: &[u8],
    ) -> Result {
        ctx.device
            .set_texture_data(&self.data.handle, &data, x, y, width, height)
    }

    /// Overwrites the entire texture with new RGBA pixel data.
    ///
    /// This method requires you to provide enough data to fill the texture.
    /// If you provide too little data, an error will be returned.
    /// If you provide too much data, it will be truncated.
    ///
    /// If you only want to write to a subsection of the texture, use the [`set_data`](Self::set_data)
    /// method instead.
    ///
    /// # Errors
    ///
    /// * [`TetraError::NotEnoughData`] will be returned if not enough data is provided to fill
    /// the texture. This is to prevent the graphics API from trying to read uninitialized memory.
    pub fn replace_data(&self, ctx: &mut Context, data: &[u8]) -> Result {
        let (width, height) = self.size();
        self.set_data(ctx, 0, 0, width, height, data)
    }
}

/// Filtering algorithms that can be used when scaling an image.
///
/// Tetra currently defaults to using `Nearest` for all newly created textures.
#[derive(Debug, Clone, Copy)]
pub enum FilterMode {
    /// Nearest-neighbor interpolation. This preserves hard edges and details, but may look pixelated.
    ///
    /// If you're using pixel art, this is probably the scaling mode you should use.
    Nearest,

    /// Linear interpolation. This smooths images when scaling them up or down.
    Linear,
}

/// Information on how to slice a texture so that it can be stretched or squashed without
/// distorting the borders.
///
/// This can be used with [`Texture::draw_nine_slice`] to easily draw things like UI panels.
///
/// # Examples
///
/// The [`nineslice`](https://github.com/17cupsofcoffee/tetra/blob/main/examples/nineslice.rs)
/// example demonstrates how to draw a `NineSlice` panel.
#[derive(Debug, Clone)]
pub struct NineSlice {
    /// The region of the texture that should be used.
    pub region: Rectangle,

    /// The offset of the border on the left side.
    pub left: f32,

    /// The offset of the border on the right side.
    pub right: f32,

    /// The offset of the border on the top side.
    pub top: f32,

    /// The offset of the border on the bottom side.
    pub bottom: f32,
}

impl NineSlice {
    /// Creates a new nine slice configuration with the given offsets.
    pub fn new(region: Rectangle, left: f32, right: f32, top: f32, bottom: f32) -> NineSlice {
        NineSlice {
            region,
            left,
            right,
            top,
            bottom,
        }
    }

    /// Creates a new nine slice configuration, using the same offset for all edges.
    pub fn with_border(region: Rectangle, border: f32) -> NineSlice {
        NineSlice {
            region,
            left: border,
            right: border,
            top: border,
            bottom: border,
        }
    }
}