1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
use crate::ppu::Ppu;
use once_cell::sync::Lazy;
use serde::{Deserialize, Serialize};
use std::f64::consts::PI;

#[derive(Default, Debug, Copy, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
#[must_use]
pub enum VideoFilter {
    Pixellate,
    #[default]
    Ntsc,
}

impl VideoFilter {
    pub const fn as_slice() -> &'static [Self] {
        &[Self::Pixellate, Self::Ntsc]
    }
}

impl AsRef<str> for VideoFilter {
    fn as_ref(&self) -> &str {
        match self {
            Self::Pixellate => "Pixellate",
            Self::Ntsc => "NTSC",
        }
    }
}

impl From<usize> for VideoFilter {
    fn from(value: usize) -> Self {
        if value == 1 {
            Self::Ntsc
        } else {
            Self::Pixellate
        }
    }
}

#[derive(Clone)]
#[must_use]
pub struct Video {
    filter: VideoFilter,
    output: Vec<u8>,
}

impl Default for Video {
    fn default() -> Self {
        Self::new()
    }
}

impl Video {
    pub fn new() -> Self {
        let mut output = vec![0x00; 4 * Ppu::SIZE];
        // Force alpha to 255.
        for p in output.iter_mut().skip(3).step_by(4) {
            *p = 255;
        }
        Self {
            filter: VideoFilter::default(),
            output,
        }
    }

    #[inline]
    pub const fn filter(&self) -> VideoFilter {
        self.filter
    }

    #[inline]
    pub fn set_filter(&mut self, filter: VideoFilter) {
        self.filter = filter;
    }

    // Returns a fully rendered frame of RENDER_SIZE RGB colors
    pub fn apply_filter(&mut self, buffer: &[u16], frame_number: u32) {
        match self.filter {
            VideoFilter::Pixellate => self.decode_buffer(buffer),
            VideoFilter::Ntsc => self.apply_ntsc_filter(buffer, frame_number),
        }
    }

    #[inline]
    #[must_use]
    pub fn output(&self) -> &[u8] {
        &self.output
    }

    pub fn decode_buffer(&mut self, buffer: &[u16]) {
        assert!(buffer.len() * 4 == self.output.len());
        for (pixel, colors) in buffer.iter().zip(self.output.chunks_exact_mut(4)) {
            assert!(colors.len() > 2);
            let (red, green, blue) = Ppu::system_palette(*pixel);
            colors[0] = red;
            colors[1] = green;
            colors[2] = blue;
            // Alpha should always be 255
        }
    }

    // Amazing implementation Bisqwit! Much faster than my original, but boy what a pain
    // to translate it to Rust
    // Source: https://bisqwit.iki.fi/jutut/kuvat/programming_examples/nesemu1/nesemu1.cc
    // http://wiki.nesdev.com/w/index.php/NTSC_video
    pub fn apply_ntsc_filter(&mut self, buffer: &[u16], frame_number: u32) {
        assert!(buffer.len() * 4 == self.output.len());
        let mut prev_pixel = 0;
        for (idx, (pixel, colors)) in buffer
            .iter()
            .zip(self.output.chunks_exact_mut(4))
            .enumerate()
        {
            let x = idx % 256;
            let color = if x == 0 {
                // Remove pixel 0 artifact from not having a valid previous pixel
                0
            } else {
                let y = idx / 256;
                let even_phase = if frame_number & 0x01 == 0x01 { 0 } else { 1 };
                let phase = (2 + y * 341 + x + even_phase) % 3;
                NTSC_PALETTE
                    [phase + ((prev_pixel & 0x3F) as usize) * 3 + (*pixel as usize) * 3 * 64]
            };
            prev_pixel = u32::from(*pixel);
            assert!(colors.len() > 2);
            colors[0] = (color >> 16 & 0xFF) as u8;
            colors[1] = (color >> 8 & 0xFF) as u8;
            colors[2] = (color & 0xFF) as u8;
            // Alpha should always be 255
        }
    }
}

impl std::fmt::Debug for Video {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Video")
            .field("filter", &self.filter)
            .field("output_len", &self.output.len())
            .finish()
    }
}

pub static NTSC_PALETTE: Lazy<Vec<u32>> = Lazy::new(|| {
    // NOTE: There's lot's to clean up here -- too many magic numbers and duplication but
    // I'm afraid to touch it now that it works
    // Source: https://bisqwit.iki.fi/jutut/kuvat/programming_examples/nesemu1/nesemu1.cc
    // http://wiki.nesdev.com/w/index.php/NTSC_video

    // Calculate the luma and chroma by emulating the relevant circuits:
    const VOLTAGES: [i32; 16] = [
        -6, -69, 26, -59, 29, -55, 73, -40, 68, -17, 125, 11, 68, 33, 125, 78,
    ];

    let mut ntsc_palette = vec![0; 512 * 64 * 3];

    // Helper functions for converting YIQ to RGB
    let gamma = 2.0; // Assumed display gamma
    let gammafix = |color: f64| {
        if color <= 0.0 {
            0.0
        } else {
            color.powf(2.2 / gamma)
        }
    };
    let yiq_divider = f64::from(9 * 10u32.pow(6));
    for palette_offset in 0..3 {
        for channel in 0..3 {
            for color0_offset in 0..512 {
                let emphasis = color0_offset / 64;

                for color1_offset in 0..64 {
                    let mut y = 0;
                    let mut i = 0;
                    let mut q = 0;
                    // 12 samples of NTSC signal constitute a color.
                    for sample in 0..12 {
                        let noise = (sample + palette_offset * 4) % 12;
                        // Sample either the previous or the current pixel.
                        // Use pixel=color0 to disable artifacts.
                        let pixel = if noise < 6 - channel * 2 {
                            color0_offset
                        } else {
                            color1_offset
                        };

                        // Decode the color index.
                        let chroma = pixel & 0x0F;
                        // Forces luma to 0, 4, 8, or 12 for easy lookup
                        let luma = if chroma < 0x0E { (pixel / 4) & 12 } else { 4 };
                        // NES NTSC modulator (square wave between up to four voltage levels):
                        let limit = if (chroma + 8 + sample) % 12 < 6 {
                            12
                        } else {
                            0
                        };
                        let high = if chroma > limit { 1 } else { 0 };
                        let emp_effect = if (152_278 >> (sample / 2 * 3)) & emphasis > 0 {
                            0
                        } else {
                            2
                        };
                        let level = 40 + VOLTAGES[high + emp_effect + luma];
                        // Ideal TV NTSC demodulator:
                        let (sin, cos) = (PI * sample as f64 / 6.0).sin_cos();
                        y += level;
                        i += level * (cos * 5909.0) as i32;
                        q += level * (sin * 5909.0) as i32;
                    }
                    // Store color at subpixel precision
                    let y = f64::from(y) / 1980.0;
                    let i = f64::from(i) / yiq_divider;
                    let q = f64::from(q) / yiq_divider;
                    let idx = palette_offset + color0_offset * 3 * 64 + color1_offset * 3;
                    match channel {
                        2 => {
                            let rgb =
                                255.95 * gammafix(q.mul_add(0.623_557, i.mul_add(0.946_882, y)));
                            ntsc_palette[idx] += 0x10000 * rgb.clamp(0.0, 255.0) as u32;
                        }
                        1 => {
                            let rgb =
                                255.95 * gammafix(q.mul_add(-0.635_691, i.mul_add(-0.274_788, y)));
                            ntsc_palette[idx] += 0x00100 * rgb.clamp(0.0, 255.0) as u32;
                        }
                        0 => {
                            let rgb =
                                255.95 * gammafix(q.mul_add(1.709_007, i.mul_add(-1.108_545, y)));
                            ntsc_palette[idx] += rgb.clamp(0.0, 255.0) as u32;
                        }
                        _ => (), // invalid channel
                    }
                }
            }
        }
    }

    ntsc_palette
});