1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
//! Hash functions and their outputs

use crate::error::{Error, Kind};
use serde::de::Error as _;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::convert::TryFrom;
use std::{
    fmt::{self, Debug, Display},
    str::FromStr,
};
use subtle_encoding::{Encoding, Hex};
use tendermint_proto::Protobuf;

/// Output size for the SHA-256 hash function
pub const SHA256_HASH_SIZE: usize = 32;

/// Hash algorithms
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub enum Algorithm {
    /// SHA-256
    Sha256,
}

/// Hash digests
#[derive(Copy, Clone, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub enum Hash {
    /// SHA-256 hashes
    Sha256([u8; SHA256_HASH_SIZE]),
    /// Empty hash
    None,
}

impl Protobuf<Vec<u8>> for Hash {}

/// Default conversion from Vec<u8> is SHA256 Hash or None
impl TryFrom<Vec<u8>> for Hash {
    type Error = Error;

    fn try_from(value: Vec<u8>) -> Result<Self, Self::Error> {
        if value.is_empty() {
            return Ok(Hash::None);
        }
        Hash::from_bytes(Algorithm::Sha256, &value)
    }
}

impl From<Hash> for Vec<u8> {
    fn from(value: Hash) -> Self {
        match value {
            Hash::Sha256(s) => s.to_vec(),
            Hash::None => vec![],
        }
    }
}

impl Hash {
    /// Create a new `Hash` with the given algorithm type
    pub fn from_bytes(alg: Algorithm, bytes: &[u8]) -> Result<Hash, Error> {
        if bytes.is_empty() {
            return Ok(Hash::None);
        }
        match alg {
            Algorithm::Sha256 => {
                if bytes.len() == SHA256_HASH_SIZE {
                    let mut h = [0u8; SHA256_HASH_SIZE];
                    h.copy_from_slice(bytes);
                    Ok(Hash::Sha256(h))
                } else {
                    Err(Kind::Parse
                        .context(format!("hash invalid length: {}", bytes.len()))
                        .into())
                }
            }
        }
    }

    /// Decode a `Hash` from upper-case hexadecimal
    pub fn from_hex_upper(alg: Algorithm, s: &str) -> Result<Hash, Error> {
        if s.is_empty() {
            return Ok(Hash::None);
        }
        match alg {
            Algorithm::Sha256 => {
                let mut h = [0u8; SHA256_HASH_SIZE];
                Hex::upper_case().decode_to_slice(s.as_bytes(), &mut h)?;
                Ok(Hash::Sha256(h))
            }
        }
    }

    /// Return the digest algorithm used to produce this hash
    pub fn algorithm(self) -> Algorithm {
        match self {
            Hash::Sha256(_) => Algorithm::Sha256,
            Hash::None => Algorithm::Sha256,
        }
    }

    /// Borrow the `Hash` as a byte slice
    pub fn as_bytes(&self) -> &[u8] {
        match self {
            Hash::Sha256(ref h) => h.as_ref(),
            Hash::None => &[],
        }
    }

    /// Convenience function to check for Hash::None
    pub fn is_empty(&self) -> bool {
        self == &Hash::None
    }
}

impl Debug for Hash {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Hash::Sha256(_) => write!(f, "Hash::Sha256({})", self),
            Hash::None => write!(f, "Hash::None"),
        }
    }
}

impl Default for Hash {
    fn default() -> Self {
        Hash::None
    }
}

impl Display for Hash {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let hex = match self {
            Hash::Sha256(ref h) => Hex::upper_case().encode_to_string(h).unwrap(),
            Hash::None => String::new(),
        };

        write!(f, "{}", hex)
    }
}

impl FromStr for Hash {
    type Err = Error;

    fn from_str(s: &str) -> Result<Self, Error> {
        Self::from_hex_upper(Algorithm::Sha256, s)
    }
}

// Serialization is used in light-client config
impl<'de> Deserialize<'de> for Hash {
    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        let hex = String::deserialize(deserializer)?;

        if hex.is_empty() {
            Err(D::Error::custom("empty hash"))
        } else {
            Ok(Self::from_str(&hex).map_err(|e| D::Error::custom(format!("{}", e)))?)
        }
    }
}

impl Serialize for Hash {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        self.to_string().serialize(serializer)
    }
}

/// Serialization/deserialization for `Hash` that allows for empty hashes.
pub mod allow_empty {
    use super::*;

    /// Serialize [`Hash`](crate::hash::Hash) into a string.
    pub fn serialize<S>(value: &Hash, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        value.to_string().serialize(serializer)
    }

    /// Deserialize [`Hash`](crate::hash::Hash) from a string, allowing for
    /// empty hashes.
    pub fn deserialize<'de, D>(deserializer: D) -> Result<Hash, D::Error>
    where
        D: Deserializer<'de>,
    {
        let hex = String::deserialize(deserializer)?;
        Hash::from_str(&hex).map_err(serde::de::Error::custom)
    }
}

/// AppHash is usually a SHA256 hash, but in reality it can be any kind of data
#[derive(Clone)]
pub struct AppHash(Vec<u8>);

impl Protobuf<Vec<u8>> for AppHash {}

impl TryFrom<Vec<u8>> for AppHash {
    type Error = Error;

    fn try_from(value: Vec<u8>) -> Result<Self, Self::Error> {
        Ok(AppHash(value))
    }
}
impl From<AppHash> for Vec<u8> {
    fn from(value: AppHash) -> Self {
        value.0
    }
}

impl AppHash {
    /// Return AppHash value as vec<u8>
    pub fn value(&self) -> Vec<u8> {
        self.0.clone()
    }

    /// Decode a `Hash` from upper-case hexadecimal
    pub fn from_hex_upper(s: &str) -> Result<Self, Error> {
        if s.len() % 2 != 0 {
            return Err(Kind::InvalidAppHashLength.into());
        }
        let mut h = vec![0; s.len() / 2];
        Hex::upper_case().decode_to_slice(s.as_bytes(), &mut h)?;
        Ok(AppHash(h))
    }
}

impl AsRef<[u8]> for AppHash {
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl Debug for AppHash {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "hash::AppHash({:?})", self.0)
    }
}

impl Display for AppHash {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{}",
            Hex::upper_case().encode_to_string(&self.0).unwrap()
        )
    }
}

impl PartialEq for AppHash {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl FromStr for AppHash {
    type Err = Error;

    fn from_str(s: &str) -> Result<Self, Error> {
        Self::from_hex_upper(s)
    }
}