1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/*! **Typed early returns and loop control + Syntax sugar for try!-like error handling**

*Works with Rust v1.34+ (released on 11 April 2019)*

# Getting started

The main focus of this crate are the following three macros:
- `tear!` is used with `ValRet` for typed early returns.
- `terror!` is syntax-sugar for `try!` or the `?` operator.
- `twist!` works with `Looping` to implement typed loop control.

Look at the synopsis for a general idea of what is possible,
and then read the documentation for the macro that interests you.

Otherwise, read the `overview` module documentation that mentions *all* the things in this crate.

## Feature flags

- The "experimental" crate feature enables support for the experimental `Try` trait.

- The "combinators" crate feature adds the `side` method to the `Judge` trait. It lets you convert
  to `Either` any type that implements `Judge`. You can then use `Either`'s combinators to do
  what you want.

- (dev) "ignore-ui" lets you ignore error message tests because all of them are wrong as soon
  as you have any warnings.

## Synopsis

Import the macros into your module:
```rust
use tear::prelude::*;
```

Explicit error-handling syntax with `terror!`:
```rust
# use tear::prelude::*;
# use std::io::{self, ErrorKind};
# fn can_error () -> Result<i32, CustomError> { Ok(1) }
# fn can_io_error () -> io::Result<i32> { Err(io::Error::new(ErrorKind::Other, "nope")) }
# fn print_error<T> (_ :T) -> CustomError { CustomError::Str("a".to_string()) }
# enum CustomError {
#     Io(io::Error),
#     Str(String)
# }
# fn f() -> Result<i32, CustomError> {
let handled = terror! { can_error() => print_error };
let variant = terror! { can_io_error() => CustomError::Io };
# Ok(1)
# }

// Equivalent using `?`:
# fn g() -> Result<i32, CustomError> {
let handled = can_error().map_err(print_error)?;
let variant = can_io_error().map_err(CustomError::Io)?;
# Ok(2)
# }
```

Early loop continue with `twist!`:
```
# use tear::extra::*;
# struct Regex {}
# impl Regex {
#     fn new(_ :&str) -> Result<Regex, ()> { Err(()) }
# }
# let regexes_strings = vec![ "a", "b" ];
for re in regexes_strings {
    // Skip iteration if the regex fails to compile
    let re = twist! { Regex::new(re) => |_| next!() };

    // Use regex...
# }
```

Keyword-like early returns with `tear_if!`:
```rust
# use tear::prelude::*;
fn divide_i32 (num: i32, denom: i32) -> Option<f32> {
    // Return early if dividing by 0
    tear_if! { denom == 0, None };

    // Compute quotient...
    # None
# }
```

Typed returns with `tear!`:
```rust
# use tear::prelude::*;
// Tells the calling function to return early on failure
fn get_value_or_return() -> ValRet<String, i32> { Ret(-1) }

fn status_code() -> i32 {
    let v = tear! { get_value_or_return() };

    // Process value...
    # 1
# }
```

# See also

- [Error Handling in Rust §The real `try!` macro / `?` operator](https://blog.burntsushi.net/rust-error-handling/#the-real-try-macro-operator)
- [guard](https://docs.rs/crate/guard), a crate implementing "guard" expressions,
  the opposite of `tear_if!`.

Finally, please star the [GitHub repo](https://github.com/tqdv/tear) if you found this crate useful.
It helps developer ego !

# Module documentation

Most things are public to allow easy modification. However, things intended only for module
development are marked as `(dev)`. A breaking change in those symbols *is not* a breaking change
in public API. Nonetheless, they will be documented in the changelog

In this module, we define in order
- ValRet, its implementation, and its associated trait Return
- Moral, its implementation, and its associated trait Judge
- tear!, tear_if! and terror! macros
*/
#![no_std] // But we use std for tests
#![warn(missing_docs)] // Documentation lints
#![allow(clippy::tabs_in_doc_comments)] // Clippy ignore

// Optional features
#![cfg_attr(feature = "experimental", feature(try_trait))]

// Modules
pub mod overview; // For documentation
pub mod prelude;
pub mod extra;
pub mod trait_impl; // Move the trait implementations as they are quite noisy
pub mod twist_impl; // Currently only for `twist!`
#[macro_use] pub mod util; // Utility macros that aren't the main focus. To reduce file size.

// Reexports for macros and convenience
pub use twist_impl::BreakValError;
pub use twist_impl::{BREAKVAL_IN_NOT_LOOP, BREAK_WITHOUT_VAL, BAD_BREAKVAL_TYPE};
pub use twist_impl::Looping;
pub use util::gut;
pub use trait_impl::Maru;
pub use core::convert::From;

// For convenience, also used in prelude
use ValRet::*;
use Moral::*;
#[cfg(feature = "combinators")] use either::Either::{self, *};

/** Represents a usable value or an early return. Use with [`tear!`]

# Description

The idea is to type an early return. The early return either evaluates to something (Val) or
returns early (Ret).
*/
#[must_use = "Suggestion: use tear! to handle it"]
#[derive(PartialEq, Debug, Clone)]
pub enum ValRet<V, R> {
	/// The usable value
	Val(V),
	/// The return value
	Ret(R),
}

/**
**NB**: Other combinators such as `and`, `and_then`, `or`, `map_val`
aren't implemented because I didn't need them, not because they aren't useful.

Examples will all use the following two variables
```
# use tear::prelude::*;
let ok:    ValRet<&str, &str> = Val("ok");
let error: ValRet<&str, &str> = Ret("error");
```
*/
impl<V, R> ValRet<V, R> {
	/* Accessors */

	/// Gets the `Val(V)` variant as `Option<V>`
	pub fn val (self) -> Option<V> { maybe_match! { self, Val(v) => v } }
	/// Gets the `Ret(R)` variant as `Option<R>`
	pub fn ret (self) -> Option<R> { maybe_match! { self, Ret(r) => r } }
}

/// Convert into [`ValRet`]
pub trait Return where Self :Sized {
	/// The Val in ValRet
	type Value;
	/// The Ret in ValRet
	type Returned;
	
	/// Convert itself to a ValRet
	fn into_valret (self) -> ValRet<Self::Value, Self::Returned>;
}

/// A notion of good and bad for the [`terror!`] macro
#[derive(PartialEq, Debug, Clone)]
pub enum Moral<Y, N> {
	/// The good
	Good(Y),
	/// And the bad
	Bad(N),
}

impl<Y, N> Moral<Y, N> {
	/* Accessors */

	/// Gets the `Good(Y)` variant as `Option<Y>`
	pub fn good (self) -> Option<Y> { maybe_match! { self, Good(v) => v } }
	/// Gets the `Bad(N)` variant as `Option<N>`
	pub fn bad (self) -> Option<N> { maybe_match! { self, Bad(v) => v } }

	/* Conversions */

	/** Convert to ValRet

	Maps Good to Val and Bad to Ret.
	*/
	pub fn into_valret (self) -> ValRet<Y, N> {
		match self {
			Good(v) => Val(v),
			Bad(v) => Ret(v),
		}
	}

	/** Convert to Result. Use [`Judge::result`] instead

	Maps Good to Ok and Bad to Err.
	*/
	pub fn into_result (self) -> Result<Y, N> {
		match self {
			Good(v) => Ok(v),
			Bad(v) => Err(v),
		}
	}

	/** Convert to Either. Use [`Judge::side`] instead

	Maps Good to Right and Bad to Left.
	*/
	#[cfg(feature = "combinators")]
	pub fn into_either (self) -> Either<N, Y> {
		match self {
			Good(v) => Right(v),
			Bad(v) => Left(v),
		}
	}
	
	/* Special conversions */

	/** (dev) Convert to a [`Looping`] by mapping Good to Resume, and Bad through a function

	The function `f` takes the bad value and maps it to a `Looping` value.

	Used in the `twist!` macro with the mapping (`=>`) syntax. See [`twist!`] documentation.
	*/
	pub fn resume_or_else<B> (self, f :impl FnOnce(N) -> Looping<Y, B>) -> Looping<Y, B> {
		match self {
			Good(v) => Looping::Resume(v),
			Bad(v) => f(v),
		}
	}
}

/** Convert from and to [`Moral`]. Used for the macro map syntax.

This mirrors the [`ops::Try`](`core::ops::Try`) trait.

It is used for the `=>` mapping syntax of macros, to differentiate the value we want to keep from
the value we want to map through the function.
*/
pub trait Judge :Sized {
	/// This is considered Good
	type Positive;
	/// This is considered Bad
	type Negative;
	
	/// Convert to Moral
	fn into_moral (self) -> Moral<Self::Positive, Self::Negative>;
	
	/** Wraps a good value into itself
	
	For example `Result::Ok(v)` and `Judge::from_good(v)` are equivalent. Useful for converting types.
	*/
	fn from_good (v :Self::Positive) -> Self;
	
	/** Wraps a bad value into itself
	
	For example `Result::Err(e)` and `Judge::from_bad(e)` are equivalent. Useful for converting types.
	*/
	fn from_bad (v :Self::Negative) -> Self;

	/* Supplied methods */

	/** Convert to result */
	fn result (self) -> Result<Self::Positive, Self::Negative> {
		self.into_moral().into_result()
	}

	/** Convert to Either */
	#[cfg(feature = "combinators")]
	fn side (self) -> Either<Self::Negative, Self::Positive> {
		self.into_moral().into_either()
	}
}

/** Turns a [`ValRet`] into a value or an early return

It also coerces its argument to a `ValRet` ([`Return`] trait).

# Description

```text
let x = tear! { $e };
```

If $e is `Val(v)`, then v is assigned to x. Otherwise it is `Ret(r)`, in which case
the function immediately returns with a value of r.

This macro is useful when you have functions that return ValRet.

```text
let x = tear! { $e => $f }
```

Same as the previous form, but the return value `r` is first mapped through $f before returning.
In short, we return `$f(r)`.

Additionally, both forms make use of the [`convert::From`](`core::convert::From`) trait to automatically convert
the value when returning it. This behaviour is the same as the try operator `?`.
You may need to be more specific with type annotations so that the compiler can infer the right types.

# Examples

tear! with Val and Ret.

```rust
# #[macro_use] extern crate tear;
# use tear::prelude::*;
#
// "Ian" is assigned to name
let name = tear! { Val::<_, ()>("Ian") };
# assert_eq![ name, "Ian" ];

# fn func () -> i32 {
// The function immediately returns -1
let _ = tear! { Ret(-1) };
# 0
# }
# let r = func();
# assert_eq![ r, -1 ];
```

tear! with a function returning ValRet

```rust
# #[macro_use] extern crate tear;
# use tear::prelude::*;
fn get_name () -> ValRet<String, i32> {
    Val("Chris".to_string())
    // or Ret(0)
}

fn func () -> i32 {
    // Will either assign the value to name, or return immediately
    let name = tear! { get_name() };
    name.len() as i32
}
# let x = func();
# assert_eq![ x, 5 ];
```

Mapping the return value

```rust
# #[macro_use] extern crate tear;
# use std::ffi::OsString;
fn string_id(s: OsString) -> String {
    let s: String = tear! { s.into_string() => |_| "No ID".to_string() };
    let id = s.len().to_string();
    id
}
# assert_eq![ string_id(OsString::from("ROOT")), "4" ];
```

Automatic conversion with `convert::From`

```rust
# use tear::prelude::*;
#[derive(Debug, PartialEq, Eq)]
struct MyInt(u8);
impl std::convert::From<u8> for MyInt {
    fn from(x :u8) -> Self { Self(x) }
}

fn five_as_myint() -> MyInt {
    tear! { Ret(5) }
}

assert_eq![ five_as_myint(), MyInt(5) ];
```

# Naming

The name "tear" comes from the image of tearing apart the the usable value from the early return.
It also happens to be that "tear" looks like "ret(urn)" backwards.
*/
#[macro_export]
macro_rules! tear {
	// `tear! { $e }`
	( $e:expr ) => {
		match $crate::Return::into_valret($e) {
			$crate::ValRet::Val(v) => v,
			$crate::ValRet::Ret(r) => return $crate::From::from(r),
		}
	};
	// With a mapping function eg. `tear! { $e => |v| v }` or `tear! { $e => func }`
	( $e:expr => $f:expr ) => {
		{
			#[allow(clippy::redundant_closure_call)]
			match $crate::Judge::into_moral($e) {
				$crate::Moral::Good(v) => v,
				$crate::Moral::Bad(v) => return $crate::From::from($f(v)),
			}
		}
	}
}

/** Explicit `if` statement with early return 

# Description

```text
tear_if! { cond,  // <- NB: it's a comma
    do_things();
    v             // Return value
}
```

If cond is true, it executes the statements in its body and returns its value (v here).
It's basically an early return without the return statement at the end.

```text
tear_if! { let pat = expr,
    do_things();
    v
}
```

You can also use the pattern matching `if let`.

# Examples

Early return a value: recursively computing the length of a slice.
```rust
# #[macro_use] extern crate tear;
fn len (v: &[i32]) -> usize {
    // Base case
    tear_if! { v.is_empty(), 0 as usize }
    
    // Recursion
    1 + len(&v[1..])
}
# assert_eq![ len(&[1, 2, 3]), 3 ];
```

Handle simple cases: printing help in a command line utility
```rust
# #[macro_use] extern crate tear;
use std::env;

fn main() {
    let args: Vec<String> = env::args().collect();
    tear_if! { args.contains(&String::from("--help")),
        println!("No help available.")
    }
    
    println!("Greetings, human!");
}
```

Use patterns like `if let`
```rust
# #[macro_use] extern crate tear;
fn add_five(x: Option<i32>) -> i32 {
    tear_if! { let None = x, 0 }
    
    x.unwrap() + 5
}

assert_eq![ add_five(Some(2)), 7 ];
assert_eq![ add_five(None), 0 ];
```
*/
#[macro_export]
macro_rules! tear_if {
	// Normal tear_if! { $cond, $block }
	( $c:expr $( , $($b:tt)* )? ) => {
		$crate::tear! {
			if $c {
				$crate::ValRet::Ret({ $($($b)*)? })
			} else {
				$crate::ValRet::Val(())
			}
		}
	};
	// Handle tear_if! { let … }
	( let $p:pat = $e:expr $( , $($b:tt)* )? ) => {
		$crate::tear! {
			if let $p = $e {
				$crate::ValRet::Ret({ $($($b)*)? })
			} else {
				$crate::ValRet::Val(())
			}
		}
	};
}

/** [`try!`]-like error-handling macro

`terror!` is like `tear!`, but stronger and more righteous.
It automatically converts the Bad value to the return type Bad value ([`Judge`] trait).

# Description

```text
let x = terror! { $e };
```

If $e is a good value, it is assigned to x. Otherwise, $e is `Bad(value)`, we return `from_bad(value)`.
This form is equivalent to the `?` operator.

```text
let x = terror! { $e => $f };
```

Same as the previous form, but the bad `value` is first mapped through $f before returning.
In short, we return `from_bad($f(value))`.

Both forms make use of the [`convert::From`](`core::convert::From`) trait to convert the bad value,
making it fully compatible with `try!` and the `?` operator.

# Explanation using examples

The description is especially terse on purpose: it is really hard to explain what `terror!` does without using examples.

## Simple examples

### Ripping Good and Bad values

`even_number` is assigned 2 because `Good(2)` is Good.

```rust
# #[macro_use] extern crate tear;
# use tear::extra::*;
fn return_two() -> Result<i32, String> {
    let even_number: i32 = terror! { Good::<i32, String>(2) };
    # assert_eq![ even_number, 2 ];
    # Ok(even_number)
}
```

`error_five` returns early with `Err("five".to_string())` because `Bad("five".to_string())` is Bad.

```rust
# #[macro_use] extern crate tear;
# use tear::extra::*;
fn error_five() -> Result<i32, String> {
    let another_number: i32 = terror! { Bad("five".to_string()) };
    # Ok(5)
}
# assert_eq![ error_five(), Err("five".to_string()) ];
```

### Handling errors

Forwarding errors: If `s.into_string` is `Ok(v)`, the `String` v is assigned to s. If it is `Err(e)` with e being an `OsString`, we return `Err(e)`.

```rust
# #[macro_use] extern crate tear;
# use std::ffi::OsString;
fn len(s: OsString) -> Result<usize, OsString> {
    //        ┌─────────────────┐         │
    //        │        Result<String, OsString>
    //        │         └───────────┐
    let s: String = terror! { s.into_string() };

    Ok(s.len())
}
# assert_eq![ len(OsString::from("aa")), Ok(2) ];
```

Using a mapping function: we converts the error to the return type error

```rust
# #[macro_use] extern crate tear;
# use std::string::FromUtf8Error;
fn to_string(b: Vec<u8>) -> Result<String, String> {
    let s = terror! { String::from_utf8(b) => |e: FromUtf8Error| e.utf8_error().to_string() };

    Ok(s)
}
# assert_eq![ to_string(b"Zach".to_vec()), Ok("Zach".to_string()) ];
```

## The first form: `terror! { $e }`

```rust
# #[macro_use] extern crate tear;
# use std::num::ParseIntError;
fn parse_number (s :String) -> Result<i64, ParseIntError> {
    // Early return on error
    let n: i32 = terror! { s.parse() };
    Ok(n as i64)
}
# assert_eq![ parse_number("2".to_string()), Ok(2) ];
```

In this example, `s.parse()` returns a `Result<i32, ParseIntError>`. The good value is `i32`,
and the bad value is `ParseIntError`.

If we parsed the string succesfully, `terror!` evaluates to the parsed `i32` and
it is assigned to `n`.

But if fails, the ParseIntError is returned *as an error*. This means that
our `Err::<i32, ParseIntError>` is converted to a `Err::<i64, ParseIntError>` and then returned.

This form of `terror!` is especially useful when you just want to forward the error from
a function call to the function return value. Exactly like the `?` operator.

## The second form: `terror! { $e => $f }`

```rust
# #[macro_use] extern crate tear;
# use std::num::ParseIntError;
# use std::io;
# #[derive(Debug)]
enum Error {
    Parse(ParseIntError),
    Io(io::Error),
}

# fn parse_number (s :String) -> Result<i64, ParseIntError> {
#     // Early return on error
#     let n: i32 = terror! { s.parse() };
#     Ok(n as i64)
# }
#
fn square (s: String) -> Result<String, Error> {
    // If parse_number fails, convert the ParseIntError into our Error type and return early
    let number: i64 = terror! { parse_number(s) => Error::Parse };
    
    // Square the number and convert it to string
    let squared = (number * number).to_string();
    Ok(squared)
}
# assert_eq![ square("1".to_string()).unwrap(), "1".to_string() ];
```

We now know that `parse_number` returns a `Result<i64, ParseIntError>`.

We would now like to wrap that `ParseIntError` error into our our custom `Error` error type.
To do so, we extract the `ParseIntError`, and wrap it into our custom error with `Error::Parse`.

That is the role of the function following the `=>` arrow: it converts the error type of
the left statement, into the function return error type.

### Automatic conversion just like `?`

Since `terror!` mimics `?`, it also supports autoconversion using the `convert::From` trait.

```rust
# use tear::prelude::*;
# use std::io;
# macro_rules! assert_match {
#     ( $e:expr, $($p:pat)|+ ) => {
#         match $e {
#             $($p)|+ => (),
#             ref e => panic!("assertion failed: `{:?}` does not match `{}`", e, stringify!($($p)|+)),
#         }
#     }
# }
# #[derive(Debug)]
enum CustomError {
    IOError(io::Error),
    OtherError,
}

impl std::convert::From<io::Error> for CustomError {
    fn from(x :io::Error) -> Self {
        CustomError::IOError(x)
    }
}

# fn fail_with_io_error() -> io::Result<()> {
#     Err(io::Error::new(io::ErrorKind::Other, "oh no!"))
# }
#
fn auto_convert() -> Result<bool, CustomError> {
    terror! { fail_with_io_error() };
    Ok(false)
}

assert_match![ auto_convert(), Err(CustomError::IOError(_)) ];
```


# `terror!` vs. `?` when moving into closures

The only difference between `terror!` and `?` is that since `terror!` is a macro,
you can move variables into the closure without the borrow checker yelling at you.

In this example, we want to return an error built from `path` using the `?` operator.

```compile_fail
# use std::{fs::File, path::PathBuf};
# enum Error {
#     OpenF(PathBuf),
# }
# 
fn open_file(path: PathBuf) -> Result<(), Error> {
    let file = File::open(&path).map_err(|_| Error::OpenF(path))?;
    
    // Do stuff with path and file
    # drop(path); drop(file);
    # Ok(())
}
```

However, it  fails to compile with the message `` error[E0382]: use of moved value: `path` ``.
This is because the borrow checker can't tell that when the closure is called,
it immediately returns. It sees that `path` is moved into the closure, and refuses
to let you use it in the rest of the function.

But if works if we use `terror!`. That's because since it's a macro, it expands into
code that tells the compiler that we immediately return after calling the closure.

```
# #[macro_use] extern crate tear;
# use std::{fs::File, path::PathBuf};
# enum Error {
#     OpenF(PathBuf),
# }
# 
fn open_file(path: PathBuf) -> Result<(), Error> {
    let file = terror! { File::open(&path) => |_| Error::OpenF(path) };
    
    // Do stuff with path and file
    # drop(path); drop(file);
    # Ok(())
}
```

# Naming

The name terror comes from "return error" and "tear! error".
The mnemonic was "When you need to scream an error from the inside" because of how closures worked (see §`terror!` vs. `?` when moving into closures).
*/
#[macro_export]
macro_rules! terror {
	// `terror! { $e }`
	( $e:expr ) => {
		match $crate::Judge::into_moral($e) {
			$crate::Moral::Good(v) => v,
			$crate::Moral::Bad(v) => return $crate::Judge::from_bad($crate::From::from(v)),
		}
	};
	// With a mapping function eg. `terror! { $e => |v| v }` or `terror! { $e => func }`
	( $e:expr => $f:expr ) => {
		{
			#[allow(clippy::redundant_closure_call)]
			match $crate::Judge::into_moral($e) {
				$crate::Moral::Good(v) => v,
				$crate::Moral::Bad(v) => return $crate::Judge::from_bad($crate::From::from($f(v))),
			}
		}
	}
}