1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//! This is a platform agnostic Rust driver for the TCS3472 RGB color light to
//! digital converter with IR filter, based on the [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Enable/disable the device.
//! - Enable/disable the RGB converter.
//! - Set RGB converter gain.
//! - Enable/disable the RGB converter interrupt generation.
//! - Set the RGB converter interrupt clear channel low/high thresholds.
//! - Set the RGB converter interrupt persistence.
//! - Set the number of integration cycles.
//! - Enable/disable the wait feature.
//! - Set the number of wait time cycles.
//! - Enable/disable the *wait long* setting.
//! - Read status of RGB converter.
//! - Read the clear (unfiltered) channel measurement.
//! - Read the red channel measurement.
//! - Read the green channel measurement.
//! - Read the blue channel measurement.
//! - Read the measurement of all channels at once.
//! - Read the device ID.
//!
//! ## The device
//!
//! The TCS3472 device provides a digital return of red, green, blue (RGB), and
//! clear light sensing values. An IR blocking filter, integrated on-chip and
//! localized to the color sensing photodiodes, minimizes the IR spectral
//! component of the incoming light and allows color measurements to be made
//! accurately. The high sensitivity, wide dynamic range, and IR blocking
//! filter make the TCS3472 an ideal color sensor solution for use under
//! varying lighting conditions and through attenuating materials.
//!
//! The TCS3472 color sensor has a wide range of applications including RGB LED
//! backlight control, solid-state lighting, health/fitness products,
//! industrial process controls and medical diagnostic equipment. In addition,
//! the IR blocking filter enables the TCS3472 to perform ambient light sensing
//! (ALS). Ambient light sensing is widely used in display-based products such
//! as cell phones, notebooks, and TVs to sense the lighting environment and
//! enable automatic display brightness for optimal viewing and power savings.
//! The TCS3472, itself, can enter a lower-power wait state between light
//! sensing measurements to further reduce the average power consumption.
//!
//! Datasheet:
//! - [TCS3472](https://ams.com/documents/20143/36005/TCS3472_DS000390_2-00.pdf)
//!
//! This driver is compatible with the devices TCS34725 and TCS34727.
//!
//! ## Usage examples (see also examples folder)
//!
//! To use this driver, import this crate and an `embedded_hal` implementation,
//! then create an instance of the driver.
//!
//! Please find additional examples using hardware in this repository: [driver-examples]
//!
//! [driver-examples]: https://github.com/eldruin/driver-examples
//!
//! ### Enable and read the color measurement
//!
//! Import this crate and an `embedded_hal` implementation, then instantiate
//! the device:
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use tcs3472::Tcs3472;
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tcs3472::new(dev);
//! sensor.enable().unwrap();
//! sensor.enable_rgbc().unwrap();
//! while !sensor.is_rgbc_status_valid().unwrap() {
//!     // wait for measurement to be available
//! };
//!
//! let clear = sensor.read_clear_channel().unwrap();
//! let red = sensor.read_red_channel().unwrap();
//! let green = sensor.read_green_channel().unwrap();
//! let blue = sensor.read_blue_channel().unwrap();
//!
//! println!("Measurements: clear = {}, red = {}, green = {}, blue = {}",
//!          clear, red, green, blue);
//! ```
//!
//! ### Read all the channels at once
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use tcs3472::Tcs3472;
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tcs3472::new(dev);
//! sensor.enable().unwrap();
//! sensor.enable_rgbc().unwrap();
//! while !sensor.is_rgbc_status_valid().unwrap() {
//!     // wait for measurement to be available
//! };
//!
//! let measurement = sensor.read_all_channels().unwrap();
//!
//! println!("Measurements: clear = {}, red = {}, green = {}, blue = {}",
//!          measurement.clear, measurement.red, measurement.green,
//!          measurement.blue);
//! ```
//!
//! ### Change the RGB converter gain and integration cycles
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use tcs3472::{RgbCGain, Tcs3472};
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tcs3472::new(dev);
//! sensor.enable().unwrap();
//! sensor.enable_rgbc().unwrap();
//! sensor.set_rgbc_gain(RgbCGain::_16x).unwrap();
//! sensor.set_integration_cycles(32).unwrap();
//! ```
//!
//! ### Enable wait function and set wait time to 1.008s
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use tcs3472::Tcs3472;
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tcs3472::new(dev);
//! sensor.enable().unwrap();
//! sensor.enable_rgbc().unwrap();
//! // This results in 35 * 2.4ms * 12 = 1.008s
//! sensor.set_wait_cycles(35).unwrap();
//! sensor.enable_wait_long().unwrap(); // 12x mutiplicator
//! sensor.enable_wait().unwrap(); // actually enable wait timer
//! ```
//!
//! ### Enable and configure RGB converter interrupt generation
//!
//! ```no_run
//! use linux_embedded_hal::I2cdev;
//! use tcs3472::{RgbCInterruptPersistence, Tcs3472};
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tcs3472::new(dev);
//! sensor.enable().unwrap();
//! sensor.enable_rgbc().unwrap();
//! sensor.set_rgbc_interrupt_low_threshold(1024).unwrap();
//! sensor.set_rgbc_interrupt_high_threshold(61440).unwrap();
//! sensor.set_rgbc_interrupt_persistence(RgbCInterruptPersistence::_5).unwrap();
//! sensor.enable_rgbc_interrupts().unwrap();
//! ```

#![deny(unsafe_code, missing_docs)]
#![no_std]

use embedded_hal::blocking::i2c;

mod configuration;
mod interface;
use crate::interface::{BitFlags, Register, DEVICE_ADDRESS};
mod reading;
mod types;
pub use crate::types::{AllChannelMeasurement, Error, RgbCGain, RgbCInterruptPersistence};

/// TCS3472 device driver.
#[derive(Debug)]
pub struct Tcs3472<I2C> {
    /// The concrete I²C device implementation.
    i2c: I2C,
    /// Enable register status
    enable: u8,
}

impl<I2C, E> Tcs3472<I2C>
where
    I2C: i2c::Write<Error = E>,
{
    /// Create new instance of the TCS3472 device.
    pub fn new(i2c: I2C) -> Self {
        Tcs3472 { i2c, enable: 0 }
    }

    /// Destroy driver instance, return I²C bus instance.
    pub fn destroy(self) -> I2C {
        self.i2c
    }
}