1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//! This is a platform agnostic Rust driver for the TCS3472 RGB color light to
//! digital converter with IR filter, based on the [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Enable/disable the device.
//! - Enable/disable the RGB converter.
//! - Set RGB converter gain.
//! - Enable/disable the RGB converter interrupt generation.
//! - Set the RGB converter interrupt clear channel low/high thresholds.
//! - Set the RGB converter interrupt persistence.
//! - Set the number of integration cycles.
//! - Enable/disable the wait feature.
//! - Set the number of wait time cycles.
//! - Enable/disable the *wait long* setting.
//! - Read status of RGB converter.
//! - Read the clear (unfiltered) channel measurement.
//! - Read the red channel measurement.
//! - Read the green channel measurement.
//! - Read the blue channel measurement.
//! - Read the device ID.
//!
//! ## The device
//!
//! The TCS3472 device provides a digital return of red, green, blue (RGB), and
//! clear light sensing values. An IR blocking filter, integrated on-chip and
//! localized to the color sensing photodiodes, minimizes the IR spectral
//! component of the incoming light and allows color measurements to be made
//! accurately. The high sensitivity, wide dynamic range, and IR blocking
//! filter make the TCS3472 an ideal color sensor solution for use under
//! varying lighting conditions and through attenuating materials.
//! 
//! The TCS3472 color sensor has a wide range of applications including RGB LED
//! backlight control, solid-state lighting, health/fitness products,
//! industrial process controls and medical diagnostic equipment. In addition,
//! the IR blocking filter enables the TCS3472 to perform ambient light sensing
//! (ALS). Ambient light sensing is widely used in display-based products such
//! as cell phones, notebooks, and TVs to sense the lighting environment and
//! enable automatic display brightness for optimal viewing and power savings.
//! The TCS3472, itself, can enter a lower-power wait state between light
//! sensing measurements to further reduce the average power consumption.
//!
//! Datasheet:
//! - [TCS3472](https://ams.com/documents/20143/36005/TCS3472_DS000390_2-00.pdf)
//!
//! This driver is compatible with the devices TCS34725 and TCS34727.
//!
//! ## Usage examples (see also examples folder)
//!
//! ### Enable and read the color measurement
//!
//! Import this crate and an `embedded_hal` implementation, then instantiate
//! the device:
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tcs3472;
//!
//! use hal::I2cdev;
//! use tcs3472::Tcs3472;
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tcs3472::new(dev);
//! sensor.enable().unwrap();
//! sensor.enable_rgbc().unwrap();
//! while !sensor.is_rgbc_status_valid().unwrap() {
//!     // wait for measurement to be available
//! };
//!
//! let clear = sensor.read_clear_channel().unwrap();
//! let red = sensor.read_red_channel().unwrap();
//! let green = sensor.read_green_channel().unwrap();
//! let blue = sensor.read_blue_channel().unwrap();
//!
//! println!("Measurements: clear = {}, red = {}, green = {}, blue = {}",
//!          clear, red, green, blue);
//! # }
//! ```
//!
//! ### Change the RGB converter gain and integration cycles
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tcs3472;
//!
//! use hal::I2cdev;
//! use tcs3472::{ Tcs3472, RgbCGain };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tcs3472::new(dev);
//! sensor.enable().unwrap();
//! sensor.enable_rgbc().unwrap();
//! sensor.set_rgbc_gain(RgbCGain::_16x).unwrap();
//! sensor.set_integration_cycles(32).unwrap();
//! # }
//! ```
//!
//! ### Enable wait function and set wait time to 1.008s
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tcs3472;
//!
//! use hal::I2cdev;
//! use tcs3472::Tcs3472;
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tcs3472::new(dev);
//! sensor.enable().unwrap();
//! sensor.enable_rgbc().unwrap();
//! // This results in 35 * 2.4ms * 12 = 1.008s
//! sensor.set_wait_cycles(35).unwrap();
//! sensor.enable_wait_long().unwrap(); // 12x mutiplicator
//! sensor.enable_wait().unwrap(); // actually enable wait timer
//! # }
//! ```
//!
//! ### Enable and configure RGB converter interrupt generation
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate tcs3472;
//!
//! use hal::I2cdev;
//! use tcs3472::{ Tcs3472, RgbCInterruptPersistence };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sensor = Tcs3472::new(dev);
//! sensor.enable().unwrap();
//! sensor.enable_rgbc().unwrap();
//! sensor.set_rgbc_interrupt_low_threshold(1024).unwrap();
//! sensor.set_rgbc_interrupt_high_threshold(61440).unwrap();
//! sensor.set_rgbc_interrupt_persistence(RgbCInterruptPersistence::_5).unwrap();
//! sensor.enable_rgbc_interrupts().unwrap();
//! # }
//! ```

#![deny(unsafe_code)]
#![deny(missing_docs)]
#![no_std]

extern crate embedded_hal as hal;
use hal::blocking::i2c;

/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
    /// I²C bus error
    I2C(E),
    /// Invalid input data provided.
    InvalidInputData
}

/// RGB converter gain
#[derive(Debug, Clone, PartialEq)]
pub enum RgbCGain {
    /// 1x gain
    _1x,
    /// 4x gain
    _4x,
    /// 16x gain
    _16x,
    /// 60x gain
    _60x
}

/// RGB converter interrupt persistence
///
/// This controls the RGB converter interrupt generation rate.
#[derive(Debug, Clone, PartialEq)]
pub enum RgbCInterruptPersistence {
    /// Every RGBC cycle generates an interrupt.
    Every,
    /// 1 clear channel value out of range.
    _1,
    /// 2 clear channel consecutive values out of range.
    _2,
    /// 3 clear channel consecutive values out of range.
    _3,
    /// 5 clear channel consecutive values out of range.
    _5,
    /// 10 clear channel consecutive values out of range.
    _10,
    /// 15 clear channel consecutive values out of range.
    _15,
    /// 20 clear channel consecutive values out of range.
    _20,
    /// 25 clear channel consecutive values out of range.
    _25,
    /// 30 clear channel consecutive values out of range.
    _30,
    /// 35 clear channel consecutive values out of range.
    _35,
    /// 40 clear channel consecutive values out of range.
    _40,
    /// 45 clear channel consecutive values out of range.
    _45,
    /// 50 clear channel consecutive values out of range.
    _50,
    /// 55 clear channel consecutive values out of range.
    _55,
    /// 60 clear channel consecutive values out of range.
    _60,
}


const DEVICE_ADDRESS: u8 = 0x29;

struct Register;

impl Register {
    const ENABLE   : u8 = 0x00;
    const ATIME    : u8 = 0x01;
    const WTIME    : u8 = 0x03;
    const AILTL    : u8 = 0x04;
    const AIHTL    : u8 = 0x06;
    const APERS    : u8 = 0x0C;
    const CONFIG   : u8 = 0x0D;
    const CONTROL  : u8 = 0x0F;
    const ID       : u8 = 0x12;
    const STATUS   : u8 = 0x13;
    const CDATA    : u8 = 0x14;
    const RDATA    : u8 = 0x16;
    const GDATA    : u8 = 0x18;
    const BDATA    : u8 = 0x1A;
}

struct BitFlags;

impl BitFlags {
    const CMD          : u8 = 0b1000_0000;
    const CMD_AUTO_INC : u8 = 0b0010_0000;
    const POWER_ON     : u8 = 0b0000_0001; // PON
    const RGBC_EN      : u8 = 0b0000_0010; // AEN
    const WAIT_EN      : u8 = 0b0000_1000; // WEN
    const RGBC_INT_EN  : u8 = 0b0001_0000; // AIEN
    const RGBC_VALID   : u8 = 0b0000_0001; // AVALID
    const WLONG        : u8 = 0b0000_0010;
}

/// TCS3472 device driver.
#[derive(Debug, Default)]
pub struct Tcs3472<I2C> {
    /// The concrete I²C device implementation.
    i2c: I2C,
    /// Enable register status
    enable: u8
}

mod configuration;
mod reading;

impl<I2C, E> Tcs3472<I2C>
where
    I2C: i2c::Write<Error = E>
{
    /// Create new instance of the TCS3472 device.
    pub fn new(i2c: I2C) -> Self {
        Tcs3472 {
            i2c,
            enable: 0
        }
    }

    /// Destroy driver instance, return I²C bus instance.
    pub fn destroy(self) -> I2C {
        self.i2c
    }
}