1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//! Numpy support for tensors.
//!
//! Format spec:
//! https://docs.scipy.org/doc/numpy-1.14.2/neps/npy-format.html
use crate::{Kind, Tensor};
use failure::Fallible;
use std::collections::HashMap;
use std::fs::File;
use std::io::{BufReader, Read, Write};
use std::path::Path;

const NPY_MAGIC_STRING: &[u8] = b"\x93NUMPY";
const NPY_SUFFIX: &str = ".npy";

fn read_header<R: Read>(buf_reader: &mut BufReader<R>) -> Fallible<String> {
    let mut magic_string = vec![0u8; NPY_MAGIC_STRING.len()];
    buf_reader.read_exact(&mut magic_string)?;
    ensure!(magic_string == NPY_MAGIC_STRING, "magic string mismatch");
    let mut version = [0u8; 2];
    buf_reader.read_exact(&mut version)?;
    let header_len_len = match version[0] {
        1 => 2,
        2 => 4,
        otherwise => bail!("unsupported version {}", otherwise),
    };
    let mut header_len = vec![0u8; header_len_len];
    buf_reader.read_exact(&mut header_len)?;
    let header_len = header_len
        .iter()
        .rev()
        .fold(0 as usize, |acc, &v| 256 * acc + v as usize);
    let mut header = vec![0u8; header_len];
    buf_reader.read_exact(&mut header)?;
    Ok(String::from_utf8_lossy(&header).to_string())
}

#[derive(Debug, PartialEq)]
struct Header {
    descr: Kind,
    fortran_order: bool,
    shape: Vec<i64>,
}

impl Header {
    fn to_string(&self) -> Fallible<String> {
        let fortran_order = if self.fortran_order { "True" } else { "False" };
        let mut shape = self
            .shape
            .iter()
            .map(|x| x.to_string())
            .collect::<Vec<_>>()
            .join(",");
        let descr = match self.descr {
            Kind::Float => "f4",
            Kind::Double => "f8",
            Kind::Int => "i4",
            Kind::Int64 => "i8",
            Kind::Int16 => "i2",
            Kind::Int8 => "i1",
            Kind::Uint8 => "u1",
            descr => bail!("unsupported kind {:?}", descr),
        };
        if !shape.is_empty() {
            shape.push(',')
        }
        Ok(format!(
            "{{'descr': '<{}', 'fortran_order': {}, 'shape': ({}), }}",
            descr, fortran_order, shape
        ))
    }

    // Hacky parser for the npy header, a typical example would be:
    // {'descr': '<f8', 'fortran_order': False, 'shape': (128,), }
    fn parse(header: &str) -> Fallible<Header> {
        let header =
            header.trim_matches(|c: char| c == '{' || c == '}' || c == ',' || c.is_whitespace());

        let mut parts: Vec<String> = vec![];
        let mut start_index = 0usize;
        let mut cnt_parenthesis = 0i64;
        for (index, c) in header.chars().enumerate() {
            match c {
                '(' => cnt_parenthesis += 1,
                ')' => cnt_parenthesis -= 1,
                ',' => {
                    if cnt_parenthesis == 0 {
                        parts.push(header[start_index..index].to_owned());
                        start_index = index + 1;
                    }
                }
                _ => {}
            }
        }
        parts.push(header[start_index..].to_owned());
        let mut part_map: HashMap<String, String> = HashMap::new();
        for part in parts.iter() {
            let part = part.trim();
            if !part.is_empty() {
                match part.split(':').collect::<Vec<_>>().as_slice() {
                    [key, value] => {
                        let key = key.trim_matches(|c: char| c == '\'' || c.is_whitespace());
                        let value = value.trim_matches(|c: char| c == '\'' || c.is_whitespace());
                        let _ = part_map.insert(key.to_owned(), value.to_owned());
                    }
                    _ => bail!("unable to parse header {}", header),
                }
            }
        }
        let fortran_order = match part_map.get("fortran_order") {
            None => false,
            Some(fortran_order) => match fortran_order.as_ref() {
                "False" => false,
                "True" => true,
                _ => bail!("unknown fortran_order {}", fortran_order),
            },
        };
        let descr = match part_map.get("descr") {
            None => bail!("no descr in header"),
            Some(descr) => {
                ensure!(!descr.is_empty(), "empty descr");
                ensure!(!descr.starts_with('>'), "little-endian descr {}", descr);
                match descr.trim_matches(|c: char| c == '=' || c == '<') {
                    "f4" => Kind::Float,
                    "f8" => Kind::Double,
                    "i4" => Kind::Int,
                    "i8" => Kind::Int64,
                    "i2" => Kind::Int16,
                    "i1" => Kind::Int8,
                    "u1" => Kind::Uint8,
                    descr => bail!("unrecognized descr {}", descr),
                }
            }
        };
        let shape = match part_map.get("shape") {
            None => bail!("no shape in header"),
            Some(shape) => {
                let shape = shape.trim_matches(|c: char| c == '(' || c == ')' || c == ',');
                if shape.is_empty() {
                    vec![]
                } else {
                    shape
                        .split(',')
                        .map(|v| v.trim().parse::<i64>())
                        .collect::<Result<Vec<_>, _>>()?
                }
            }
        };
        Ok(Header {
            descr,
            fortran_order,
            shape,
        })
    }
}

impl crate::Tensor {
    /// Reads a npy file and return the stored tensor.
    pub fn read_npy<T: AsRef<Path>>(path: T) -> Fallible<Tensor> {
        let mut buf_reader = BufReader::new(File::open(path.as_ref())?);
        let header = read_header(&mut buf_reader)?;
        let header = Header::parse(&header)?;
        ensure!(!header.fortran_order, "fortran order not supported");
        let mut data: Vec<u8> = vec![];
        buf_reader.read_to_end(&mut data)?;
        Tensor::f_of_data_size(&data, &header.shape, header.descr)
    }

    /// Reads a npz file and returns some named tensors.
    pub fn read_npz<T: AsRef<Path>>(path: T) -> Fallible<Vec<(String, Tensor)>> {
        let zip_reader = BufReader::new(File::open(path.as_ref())?);
        let mut zip = zip::ZipArchive::new(zip_reader)?;
        let mut result = vec![];
        for i in 0..zip.len() {
            let file = zip.by_index(i).unwrap();
            let name = {
                let name = file.name();
                if name.ends_with(NPY_SUFFIX) {
                    name[..name.len() - NPY_SUFFIX.len()].to_owned()
                } else {
                    name.to_owned()
                }
            };
            let mut buf_reader = BufReader::new(file);
            let header = read_header(&mut buf_reader)?;
            let header = Header::parse(&header)?;
            ensure!(!header.fortran_order, "fortran order not supported");
            let mut data: Vec<u8> = vec![];
            buf_reader.read_to_end(&mut data)?;
            let tensor = Tensor::f_of_data_size(&data, &header.shape, header.descr)?;
            result.push((name, tensor))
        }
        Ok(result)
    }

    fn write<T: Write>(&self, f: &mut T) -> Fallible<()> {
        f.write_all(NPY_MAGIC_STRING)?;
        f.write_all(&[1u8, 0u8])?;
        let kind = self.kind();
        let header = Header {
            descr: kind,
            fortran_order: false,
            shape: self.size(),
        };
        let mut header = header.to_string()?;
        let pad = 16 - (NPY_MAGIC_STRING.len() + 5 + header.len()) % 16;
        for _ in 0..pad % 16 {
            header.push(' ')
        }
        header.push('\n');
        f.write_all(&[(header.len() % 256) as u8, (header.len() / 256) as u8])?;
        f.write_all(header.as_bytes())?;
        let numel = self.numel();
        let mut content = vec![0u8; (numel * kind.elt_size_in_bytes()) as usize];
        self.f_copy_data(&mut content, numel)?;
        f.write_all(&content)?;
        Ok(())
    }

    /// Writes a tensor in the npy format so that it can be read using python.
    pub fn write_npy<T: AsRef<Path>>(&self, path: T) -> Fallible<()> {
        let mut f = File::create(path.as_ref())?;
        self.write(&mut f)
    }

    pub fn write_npz<S: AsRef<str>, T: AsRef<Tensor>, P: AsRef<Path>>(
        ts: &[(S, T)],
        path: P,
    ) -> Fallible<()> {
        let mut zip = zip::ZipWriter::new(File::create(path.as_ref())?);
        let options =
            zip::write::FileOptions::default().compression_method(zip::CompressionMethod::Stored);

        for (name, tensor) in ts.iter() {
            zip.start_file(format!("{}.npy", name.as_ref()), options)?;
            tensor.as_ref().write(&mut zip)?
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::Header;

    #[test]
    fn parse() {
        let h = "{'descr': '<f8', 'fortran_order': False, 'shape': (128,), }";
        assert_eq!(
            Header::parse(h).unwrap(),
            Header {
                descr: crate::Kind::Double,
                fortran_order: false,
                shape: vec![128]
            }
        );
        let h = "{'descr': '<f4', 'fortran_order': True, 'shape': (256,1,128), }";
        let h = Header::parse(h).unwrap();
        assert_eq!(
            h,
            Header {
                descr: crate::Kind::Float,
                fortran_order: true,
                shape: vec![256, 1, 128]
            }
        );
        assert_eq!(
            h.to_string().unwrap(),
            "{'descr': '<f4', 'fortran_order': True, 'shape': (256,1,128,), }"
        );

        let h = Header {
            descr: crate::Kind::Int64,
            fortran_order: false,
            shape: vec![],
        };
        assert_eq!(
            h.to_string().unwrap(),
            "{'descr': '<i8', 'fortran_order': False, 'shape': (), }"
        );
    }
}