1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// Copyright 2018 Google LLC
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.
//! *Disclaimer*: This is not an official Google product.
//!
//! tarpc is an RPC framework for rust with a focus on ease of use. Defining a
//! service can be done in just a few lines of code, and most of the boilerplate of
//! writing a server is taken care of for you.
//!
//! [Documentation](https://docs.rs/crate/tarpc/)
//!
//! ## What is an RPC framework?
//! "RPC" stands for "Remote Procedure Call," a function call where the work of
//! producing the return value is being done somewhere else. When an rpc function is
//! invoked, behind the scenes the function contacts some other process somewhere
//! and asks them to evaluate the function instead. The original function then
//! returns the value produced by the other process.
//!
//! RPC frameworks are a fundamental building block of most microservices-oriented
//! architectures. Two well-known ones are [gRPC](http://www.grpc.io) and
//! [Cap'n Proto](https://capnproto.org/).
//!
//! tarpc differentiates itself from other RPC frameworks by defining the schema in code,
//! rather than in a separate language such as .proto. This means there's no separate compilation
//! process, and no context switching between different languages.
//!
//! Some other features of tarpc:
//! - Pluggable transport: any type implementing `Stream<Item = Request> + Sink<Response>` can be
//!   used as a transport to connect the client and server.
//! - `Send + 'static` optional: if the transport doesn't require it, neither does tarpc!
//! - Cascading cancellation: dropping a request will send a cancellation message to the server.
//!   The server will cease any unfinished work on the request, subsequently cancelling any of its
//!   own requests, repeating for the entire chain of transitive dependencies.
//! - Configurable deadlines and deadline propagation: request deadlines default to 10s if
//!   unspecified. The server will automatically cease work when the deadline has passed. Any
//!   requests sent by the server that use the request context will propagate the request deadline.
//!   For example, if a server is handling a request with a 10s deadline, does 2s of work, then
//!   sends a request to another server, that server will see an 8s deadline.
//! - Distributed tracing: tarpc is instrumented with
//!   [tracing](https://github.com/tokio-rs/tracing) primitives extended with
//!   [OpenTelemetry](https://opentelemetry.io/) traces. Using a compatible tracing subscriber like
//!   [Jaeger](https://github.com/open-telemetry/opentelemetry-rust/tree/main/opentelemetry-jaeger),
//!   each RPC can be traced through the client, server, and other dependencies downstream of the
//!   server. Even for applications not connected to a distributed tracing collector, the
//!   instrumentation can also be ingested by regular loggers like
//!   [env_logger](https://github.com/env-logger-rs/env_logger/).
//! - Serde serialization: enabling the `serde1` Cargo feature will make service requests and
//!   responses `Serialize + Deserialize`. It's entirely optional, though: in-memory transports can
//!   be used, as well, so the price of serialization doesn't have to be paid when it's not needed.
//!
//! ## Usage
//! Add to your `Cargo.toml` dependencies:
//!
//! ```toml
//! tarpc = "0.29"
//! ```
//!
//! The `tarpc::service` attribute expands to a collection of items that form an rpc service.
//! These generated types make it easy and ergonomic to write servers with less boilerplate.
//! Simply implement the generated service trait, and you're off to the races!
//!
//! ## Example
//!
//! This example uses [tokio](https://tokio.rs), so add the following dependencies to
//! your `Cargo.toml`:
//!
//! ```toml
//! anyhow = "1.0"
//! futures = "0.3"
//! tarpc = { version = "0.29", features = ["tokio1"] }
//! tokio = { version = "1.0", features = ["macros"] }
//! ```
//!
//! In the following example, we use an in-process channel for communication between
//! client and server. In real code, you will likely communicate over the network.
//! For a more real-world example, see [example-service](example-service).
//!
//! First, let's set up the dependencies and service definition.
//!
//! ```rust
//! # extern crate futures;
//!
//! use futures::{
//!     future::{self, Ready},
//!     prelude::*,
//! };
//! use tarpc::{
//!     client, context,
//!     server::{self, incoming::Incoming, Channel},
//! };
//!
//! // This is the service definition. It looks a lot like a trait definition.
//! // It defines one RPC, hello, which takes one arg, name, and returns a String.
//! #[tarpc::service]
//! trait World {
//!     /// Returns a greeting for name.
//!     async fn hello(name: String) -> String;
//! }
//! ```
//!
//! This service definition generates a trait called `World`. Next we need to
//! implement it for our Server struct.
//!
//! ```rust
//! # extern crate futures;
//! # use futures::{
//! #     future::{self, Ready},
//! #     prelude::*,
//! # };
//! # use tarpc::{
//! #     client, context,
//! #     server::{self, incoming::Incoming},
//! # };
//! # // This is the service definition. It looks a lot like a trait definition.
//! # // It defines one RPC, hello, which takes one arg, name, and returns a String.
//! # #[tarpc::service]
//! # trait World {
//! #     /// Returns a greeting for name.
//! #     async fn hello(name: String) -> String;
//! # }
//! // This is the type that implements the generated World trait. It is the business logic
//! // and is used to start the server.
//! #[derive(Clone)]
//! struct HelloServer;
//!
//! impl World for HelloServer {
//!     // Each defined rpc generates two items in the trait, a fn that serves the RPC, and
//!     // an associated type representing the future output by the fn.
//!
//!     type HelloFut = Ready<String>;
//!
//!     fn hello(self, _: context::Context, name: String) -> Self::HelloFut {
//!         future::ready(format!("Hello, {name}!"))
//!     }
//! }
//! ```
//!
//! Lastly let's write our `main` that will start the server. While this example uses an
//! [in-process channel](transport::channel), tarpc also ships a generic [`serde_transport`]
//! behind the `serde-transport` feature, with additional [TCP](serde_transport::tcp) functionality
//! available behind the `tcp` feature.
//!
//! ```rust
//! # extern crate futures;
//! # use futures::{
//! #     future::{self, Ready},
//! #     prelude::*,
//! # };
//! # use tarpc::{
//! #     client, context,
//! #     server::{self, Channel},
//! # };
//! # // This is the service definition. It looks a lot like a trait definition.
//! # // It defines one RPC, hello, which takes one arg, name, and returns a String.
//! # #[tarpc::service]
//! # trait World {
//! #     /// Returns a greeting for name.
//! #     async fn hello(name: String) -> String;
//! # }
//! # // This is the type that implements the generated World trait. It is the business logic
//! # // and is used to start the server.
//! # #[derive(Clone)]
//! # struct HelloServer;
//! # impl World for HelloServer {
//! #     // Each defined rpc generates two items in the trait, a fn that serves the RPC, and
//! #     // an associated type representing the future output by the fn.
//! #     type HelloFut = Ready<String>;
//! #     fn hello(self, _: context::Context, name: String) -> Self::HelloFut {
//! #         future::ready(format!("Hello, {name}!"))
//! #     }
//! # }
//! # #[cfg(not(feature = "tokio1"))]
//! # fn main() {}
//! # #[cfg(feature = "tokio1")]
//! #[tokio::main]
//! async fn main() -> anyhow::Result<()> {
//!     let (client_transport, server_transport) = tarpc::transport::channel::unbounded();
//!
//!     let server = server::BaseChannel::with_defaults(server_transport);
//!     tokio::spawn(server.execute(HelloServer.serve()));
//!
//!     // WorldClient is generated by the #[tarpc::service] attribute. It has a constructor `new`
//!     // that takes a config and any Transport as input.
//!     let mut client = WorldClient::new(client::Config::default(), client_transport).spawn();
//!
//!     // The client has an RPC method for each RPC defined in the annotated trait. It takes the same
//!     // args as defined, with the addition of a Context, which is always the first arg. The Context
//!     // specifies a deadline and trace information which can be helpful in debugging requests.
//!     let hello = client.hello(context::current(), "Stim".to_string()).await?;
//!
//!     println!("{hello}");
//!
//!     Ok(())
//! }
//! ```
//!
//! ## Service Documentation
//!
//! Use `cargo doc` as you normally would to see the documentation created for all
//! items expanded by a `service!` invocation.
#![deny(missing_docs)]
#![allow(clippy::type_complexity)]
#![cfg_attr(docsrs, feature(doc_cfg))]

#[cfg(feature = "serde1")]
#[doc(hidden)]
pub use serde;

#[cfg(feature = "serde-transport")]
pub use {tokio_serde, tokio_util};

#[cfg(feature = "serde-transport")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde-transport")))]
pub mod serde_transport;

pub mod trace;

#[cfg(feature = "serde1")]
pub use tarpc_plugins::derive_serde;

/// The main macro that creates RPC services.
///
/// Rpc methods are specified, mirroring trait syntax:
///
/// ```
/// #[tarpc::service]
/// trait Service {
/// /// Say hello
/// async fn hello(name: String) -> String;
/// }
/// ```
///
/// Attributes can be attached to each rpc. These attributes
/// will then be attached to the generated service traits'
/// corresponding `fn`s, as well as to the client stubs' RPCs.
///
/// The following items are expanded in the enclosing module:
///
/// * `trait Service` -- defines the RPC service.
///   * `fn serve` -- turns a service impl into a request handler.
/// * `Client` -- a client stub with a fn for each RPC.
///   * `fn new_stub` -- creates a new Client stub.
pub use tarpc_plugins::service;

/// A utility macro that can be used for RPC server implementations.
///
/// Syntactic sugar to make using async functions in the server implementation
/// easier. It does this by rewriting code like this, which would normally not
/// compile because async functions are disallowed in trait implementations:
///
/// ```rust
/// # use tarpc::context;
/// # use std::net::SocketAddr;
/// #[tarpc::service]
/// trait World {
///     async fn hello(name: String) -> String;
/// }
///
/// #[derive(Clone)]
/// struct HelloServer(SocketAddr);
///
/// #[tarpc::server]
/// impl World for HelloServer {
///     async fn hello(self, _: context::Context, name: String) -> String {
///         format!("Hello, {name}! You are connected from {:?}.", self.0)
///     }
/// }
/// ```
///
/// Into code like this, which matches the service trait definition:
///
/// ```rust
/// # use tarpc::context;
/// # use std::pin::Pin;
/// # use futures::Future;
/// # use std::net::SocketAddr;
/// #[derive(Clone)]
/// struct HelloServer(SocketAddr);
///
/// #[tarpc::service]
/// trait World {
///     async fn hello(name: String) -> String;
/// }
///
/// impl World for HelloServer {
///     type HelloFut = Pin<Box<dyn Future<Output = String> + Send>>;
///
///     fn hello(self, _: context::Context, name: String) -> Pin<Box<dyn Future<Output = String>
///     + Send>> {
///         Box::pin(async move {
///             format!("Hello, {name}! You are connected from {:?}.", self.0)
///         })
///     }
/// }
/// ```
///
/// Note that this won't touch functions unless they have been annotated with
/// `async`, meaning that this should not break existing code.
pub use tarpc_plugins::server;

pub(crate) mod cancellations;
pub mod client;
pub mod context;
pub mod server;
pub mod transport;
pub(crate) mod util;

pub use crate::transport::sealed::Transport;

use anyhow::Context as _;
use futures::task::*;
use std::sync::Arc;
use std::{error::Error, fmt::Display, io, time::SystemTime};

/// A message from a client to a server.
#[derive(Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
#[non_exhaustive]
pub enum ClientMessage<T> {
    /// A request initiated by a user. The server responds to a request by invoking a
    /// service-provided request handler.  The handler completes with a [`response`](Response), which
    /// the server sends back to the client.
    Request(Request<T>),
    /// A command to cancel an in-flight request, automatically sent by the client when a response
    /// future is dropped.
    ///
    /// When received, the server will immediately cancel the main task (top-level future) of the
    /// request handler for the associated request. Any tasks spawned by the request handler will
    /// not be canceled, because the framework layer does not
    /// know about them.
    Cancel {
        /// The trace context associates the message with a specific chain of causally-related actions,
        /// possibly orchestrated across many distributed systems.
        #[cfg_attr(feature = "serde1", serde(default))]
        trace_context: trace::Context,
        /// The ID of the request to cancel.
        request_id: u64,
    },
}

/// A request from a client to a server.
#[derive(Clone, Copy, Debug)]
#[non_exhaustive]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Request<T> {
    /// Trace context, deadline, and other cross-cutting concerns.
    pub context: context::Context,
    /// Uniquely identifies the request across all requests sent over a single channel.
    pub id: u64,
    /// The request body.
    pub message: T,
}

/// A response from a server to a client.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[non_exhaustive]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Response<T> {
    /// The ID of the request being responded to.
    pub request_id: u64,
    /// The response body, or an error if the request failed.
    pub message: Result<T, ServerError>,
}

/// An error indicating the server aborted the request early, e.g., due to request throttling.
#[derive(thiserror::Error, Clone, Debug, PartialEq, Eq, Hash)]
#[error("{kind:?}: {detail}")]
#[non_exhaustive]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct ServerError {
    #[cfg_attr(
        feature = "serde1",
        serde(serialize_with = "util::serde::serialize_io_error_kind_as_u32")
    )]
    #[cfg_attr(
        feature = "serde1",
        serde(deserialize_with = "util::serde::deserialize_io_error_kind_from_u32")
    )]
    /// The type of error that occurred to fail the request.
    pub kind: io::ErrorKind,
    /// A message describing more detail about the error that occurred.
    pub detail: String,
}

/// Critical errors that result in a Channel disconnecting.
#[derive(thiserror::Error, Debug, PartialEq, Eq)]
pub enum ChannelError<E>
where
    E: Error + Send + Sync + 'static,
{
    /// Could not read from the transport.
    #[error("could not read from the transport")]
    Read(#[source] Arc<E>),
    /// Could not ready the transport for writes.
    #[error("could not ready the transport for writes")]
    Ready(#[source] E),
    /// Could not write to the transport.
    #[error("could not write to the transport")]
    Write(#[source] E),
    /// Could not flush the transport.
    #[error("could not flush the transport")]
    Flush(#[source] E),
    /// Could not close the write end of the transport.
    #[error("could not close the write end of the transport")]
    Close(#[source] E),
}

impl<T> Request<T> {
    /// Returns the deadline for this request.
    pub fn deadline(&self) -> &SystemTime {
        &self.context.deadline
    }
}

pub(crate) trait PollContext<T> {
    fn context<C>(self, context: C) -> Poll<Option<anyhow::Result<T>>>
    where
        C: Display + Send + Sync + 'static;

    fn with_context<C, F>(self, f: F) -> Poll<Option<anyhow::Result<T>>>
    where
        C: Display + Send + Sync + 'static,
        F: FnOnce() -> C;
}

impl<T, E> PollContext<T> for Poll<Option<Result<T, E>>>
where
    E: Error + Send + Sync + 'static,
{
    fn context<C>(self, context: C) -> Poll<Option<anyhow::Result<T>>>
    where
        C: Display + Send + Sync + 'static,
    {
        self.map(|o| o.map(|r| r.context(context)))
    }

    fn with_context<C, F>(self, f: F) -> Poll<Option<anyhow::Result<T>>>
    where
        C: Display + Send + Sync + 'static,
        F: FnOnce() -> C,
    {
        self.map(|o| o.map(|r| r.with_context(f)))
    }
}