1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright 2022. The Tari Project
//
// Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
// following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
// disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
// following disclaimer in the documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
// products derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

//! Sometimes you need to handle sensitive data, like a passphrase or key material.
//! There are pitfalls here that you want to avoid: the data should be zeroized when it goes out of scope, shouldn't be
//! displayed or output to debug logs, shouldn't be unintentionally copied or moved, and often should have strict type
//! differentiation to avoid it being misused in an unintended context. This library provides a generic type and macro
//! that can help.

use alloc::boxed::Box;
use core::{
    any::type_name,
    fmt,
    ops::{Deref, DerefMut},
};

use zeroize::Zeroize;

/// This is a macro that produces a hidden type from an underlying data type.
///
/// It is a thin wrapper around `Hidden` and retains its useful properties:
/// - The data is not subject to `Debug` or `Display` output, which are masked.
/// - The data can only be accessed by (immutable or mutable) reference.
/// - The data zeroizes when dropped, and can also be manually zeroized.
/// - Cloning is safe.
///
/// The macro is a useful way to generate a hidden type that is subject to the compiler's type guarantees.
/// This can be useful if you need multiple hidden types that use the same underlying data type, but shouldn't be
/// confused for each other.
///
/// Note that it may not be safe to dereference the hidden data if its type implements `Copy`.
/// If the type does not implement `Copy`, you should be fine.
/// If it does, avoid dereferencing.
///
/// ```edition2018
/// # #[macro_use] extern crate tari_utilities;
/// # use tari_utilities::Hidden;
/// # use zeroize::Zeroize;
/// # fn main() {
/// // Define a hidden type with a `[u8; 32]` data type
/// hidden_type!(MyHiddenType, [u8; 32]);
///
/// // Instantiate using existing data
/// let mut example = MyHiddenType::from([1u8; 32]);
///
/// // Access the data by immutable reference
/// assert_eq!(example.reveal(), &[1u8; 32]);
///
/// // Access the data by mutable reference
/// let example_mut_ref = example.reveal_mut();
/// *example_mut_ref = [42u8; 32];
/// assert_eq!(example.reveal(), &[42u8; 32]);
///
/// // Clone the data safely
/// let mut example_clone = example.clone();
///
/// // Zeroize the data manually
/// example_clone.zeroize();
/// assert_eq!(example_clone.reveal(), &[0u8; 32]);
/// # }
/// ```
#[macro_export]
macro_rules! hidden_type {
    ($name:ident, $type:ty) => {
        /// A hidden type
        #[derive(Clone, Debug, Zeroize)]
        pub struct $name {
            data: Hidden<$type>,
        }

        impl $name {
            /// Get an immutable reference to the data
            #[allow(dead_code)]
            pub fn reveal(&self) -> &$type {
                self.data.reveal()
            }

            /// Get a mutable reference to the data
            #[allow(dead_code)]
            pub fn reveal_mut(&mut self) -> &mut $type {
                self.data.reveal_mut()
            }
        }

        impl From<$type> for $name {
            /// Hide existing data
            fn from(t: $type) -> Self {
                Self {
                    data: Hidden::hide(t),
                }
            }
        }
    };
}

/// A generic type for data that needs to be kept hidden and zeroized when out of scope, and is accessible only by
/// reference.
///
/// You can define a hidden type using any underlying data type that implements `Zeroize`.
/// This is the case for most basic types that you probably care about.
///
/// Hidden data has useful properties:
/// - The data is not subject to `Debug` or `Display` output, which are masked.
/// - The data can only be accessed by (immutable or mutable) reference.
/// - The data zeroizes when dropped, and can also be manually zeroized.
/// - Cloning is safe.
///
/// Note that it may not be safe to dereference the hidden data if its type implements `Copy`.
/// If the type does not implement `Copy`, you should be fine.
/// If it does, avoid dereferencing.
///
/// Hidden data supports transparent deserialization, but you'll need to implement serialization yourself if you need
/// it.
///
/// ```edition2018
/// # use tari_utilities::hidden::Hidden;
/// # use zeroize::Zeroize;
///
/// // In this example, we need to handle secret data of type `[u8; 32]`.
///
/// // We can create hidden data from existing data; in this case, it's the caller's responsibility to make sure the existing data is handled securely
/// let hidden_from_data = Hidden::<[u8; 32]>::hide([1u8; 32]);
///
/// // We can access the hidden data as a reference, but not take ownership of it
/// assert_eq!(hidden_from_data.reveal(), &[1u8; 32]);
///
/// // We can create default hidden data and then modify it as a mutable reference; this is common for functions that act on data in place
/// let mut hidden_in_place = Hidden::<[u8; 32]>::hide([0u8; 32]);
/// let hidden_in_place_mut_ref = hidden_in_place.reveal_mut();
/// *hidden_in_place_mut_ref = [42u8; 32];
/// assert_eq!(hidden_in_place.reveal(), &[42u8; 32]);
///
/// // Cloning is safe to do
/// let mut clone = hidden_in_place.clone();
/// assert_eq!(hidden_in_place.reveal(), clone.reveal());
///
/// // You can manually zeroize the data if you need to
/// clone.zeroize();
/// assert_eq!(clone.reveal(), &[0u8; 32]);
/// ```
#[derive(Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(transparent))]
pub struct Hidden<T>
where T: Zeroize
{
    inner: Box<T>,
}

impl<T> Hidden<T>
where T: Zeroize
{
    /// Create new hidden data from the underlying type
    pub fn hide(inner: T) -> Self {
        Self { inner: Box::new(inner) }
    }

    /// Reveal the hidden data as an immutable reference
    pub fn reveal(&self) -> &T {
        self.inner.deref()
    }

    /// Reveal the hidden data as a mutable reference
    pub fn reveal_mut(&mut self) -> &mut T {
        self.inner.deref_mut()
    }
}

/// Only output masked data for debugging, keeping the hidden data hidden
impl<T> fmt::Debug for Hidden<T>
where T: Zeroize
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Hidden<{}>", type_name::<T>())
    }
}

/// Only display masked data, keeping the hidden data hidden
impl<T> fmt::Display for Hidden<T>
where T: Zeroize
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Hidden<{}>", type_name::<T>())
    }
}

/// Zeroize the hidden data
impl<T> Zeroize for Hidden<T>
where T: Zeroize
{
    fn zeroize(&mut self) {
        self.inner.zeroize();
    }
}

/// Zeroize the hidden data when dropped
impl<T> Drop for Hidden<T>
where T: Zeroize
{
    fn drop(&mut self) {
        self.zeroize();
    }
}

#[cfg(test)]
mod tests {
    use alloc::string::ToString;

    use super::*;
    #[test]
    fn references() {
        // Check immutable reference
        assert_eq!(Hidden::hide(0u8).reveal(), &0u8);

        // Check mutable reference
        let mut hidden = Hidden::hide([0u8; 32]);
        let hidden_mut_ref = hidden.reveal_mut();

        *hidden_mut_ref = [42u8; 32];
        assert_eq!(hidden.reveal(), &[42u8; 32]);
    }

    #[test]
    fn deserialize() {
        let value = 1u8;
        let hidden = Hidden::<u8>::hide(value);

        let ser = value.to_string();

        let deser: Hidden<u8> = serde_json::from_str(&ser).unwrap();
        assert_eq!(hidden.reveal(), deser.reveal());
    }

    #[test]
    fn masking() {
        let hidden = Hidden::<u8>::hide(1u8);
        let formatted = format!("{}", hidden);
        let expected = format!("Hidden<{}>", type_name::<u8>());
        assert_eq!(formatted, expected);
    }

    #[test]
    fn macro_types() {
        hidden_type!(TypeA, [u8; 32]);
        hidden_type!(TypeB, [u8; 32]);
        let a = TypeA::from([1u8; 32]);
        let b = TypeB::from([1u8; 32]);

        assert_eq!(a.reveal(), &[1u8; 32]);
        assert_eq!(b.reveal(), &[1u8; 32]);
    }
}