1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright 2020, The Tari Project
//
// Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
// following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
// disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
// following disclaimer in the documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
// products derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

use crate::runtime::current;
use futures::future::Either;
use std::{future::Future, sync::Arc};
use tokio::{
    runtime,
    sync::{OwnedSemaphorePermit, Semaphore},
    task::JoinHandle,
};

/// Error emitted from [`try_spawn`](self::BoundedExecutor::try_spawn) when there are no tasks available
#[derive(Debug)]
pub struct TrySpawnError;

/// A task executor bounded by a semaphore.
///
/// Use the asynchronous spawn method to spawn a task. If a given number of tasks are already spawned and have not
/// completed, the spawn function will block (asynchronously) until a previously spawned task completes.
pub struct BoundedExecutor {
    inner: runtime::Handle,
    semaphore: Arc<Semaphore>,
}

impl BoundedExecutor {
    pub fn new(executor: runtime::Handle, num_permits: usize) -> Self {
        Self {
            inner: executor,
            semaphore: Arc::new(Semaphore::new(num_permits)),
        }
    }

    pub fn from_current(num_permits: usize) -> Self {
        Self::new(current(), num_permits)
    }

    pub fn can_spawn(&self) -> bool {
        self.semaphore.available_permits() > 0
    }

    pub fn try_spawn<F>(&self, future: F) -> Result<JoinHandle<F::Output>, TrySpawnError>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        let permit = self.semaphore.clone().try_acquire_owned().map_err(|_| TrySpawnError)?;
        let handle = self.do_spawn(permit, future);
        Ok(handle)
    }

    /// Spawn a future onto the Tokio runtime asynchronously blocking if there are too many
    /// spawned tasks.
    ///
    /// This spawns the given future onto the runtime's executor, usually a
    /// thread pool. The thread pool is then responsible for polling the future
    /// until it completes.
    ///
    /// If the number of pending tasks exceeds the num_permits value given to `BoundedExecutor::new`
    /// the future returned from spawn will block until a permit is released.
    ///
    /// See [module level][mod] documentation for more details.
    ///
    /// [mod]: index.html
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    /// use tari_comms::bounded_executor::BoundedExecutor;
    ///
    /// # fn dox() {
    /// // Create the runtime
    /// let mut rt = Runtime::new().unwrap();
    /// let executor = BoundedExecutor::new(rt.handle().clone(), 1);
    ///
    /// // Spawn a future onto the runtime
    /// // NOTE: BoundedExecutor::spawn is an async function and therefore, must be polled/awaited for the task to be spawned
    /// let task1 = executor.spawn(async {
    ///     println!("now running on a worker thread");
    /// });
    /// // This will spawn after task1
    /// let task2 = executor.spawn(async {
    ///     println!("will always run after the first task");
    /// });
    ///
    /// rt.block_on(task1);
    /// rt.block_on(task2);
    /// # }
    /// ```
    ///
    /// # Panics
    ///
    /// This function panics if the spawn fails. Failure occurs if the executor
    /// is currently at capacity and is unable to spawn a new future.
    pub async fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        let permit = self.semaphore.clone().acquire_owned().await;
        self.do_spawn(permit, future)
    }

    fn do_spawn<F>(&self, permit: OwnedSemaphorePermit, future: F) -> JoinHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        self.inner.spawn(async move {
            let ret = future.await;
            // Task is finished, release the permit
            drop(permit);
            ret
        })
    }
}

pub struct OptionallyBoundedExecutor {
    inner: Either<runtime::Handle, BoundedExecutor>,
}

impl OptionallyBoundedExecutor {
    pub fn new(executor: runtime::Handle, num_permits: Option<usize>) -> Self {
        Self {
            inner: num_permits
                .map(|n| Either::Right(BoundedExecutor::new(executor.clone(), n)))
                .unwrap_or_else(|| Either::Left(executor)),
        }
    }

    pub fn from_current(num_permits: Option<usize>) -> Self {
        Self::new(current(), num_permits)
    }

    pub fn can_spawn(&self) -> bool {
        match &self.inner {
            Either::Left(_) => true,
            Either::Right(exec) => exec.can_spawn(),
        }
    }

    pub fn try_spawn<F>(&self, future: F) -> Result<JoinHandle<F::Output>, TrySpawnError>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        match &self.inner {
            Either::Left(exec) => Ok(exec.spawn(future)),
            Either::Right(exec) => exec.try_spawn(future),
        }
    }

    pub async fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        match &self.inner {
            Either::Left(exec) => exec.spawn(future),
            Either::Right(exec) => exec.spawn(future).await,
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::runtime;
    use std::{
        sync::{
            atomic::{AtomicBool, Ordering},
            Arc,
        },
        time::Duration,
    };
    use tokio::time::delay_for;

    #[runtime::test_basic]
    async fn spawn() {
        let flag = Arc::new(AtomicBool::new(false));
        let flag_cloned = flag.clone();
        let executor = BoundedExecutor::new(runtime::current(), 1);

        // Spawn 1
        let task1_fut = executor
            .spawn(async move {
                delay_for(Duration::from_millis(1)).await;
                flag_cloned.store(true, Ordering::SeqCst);
            })
            .await;

        // Spawn 2
        let task2_fut = executor
            .spawn(async move {
                // This will panic if this task is spawned before task1 completes (e.g if num_permitted > 1)
                assert_eq!(flag.load(Ordering::SeqCst), true);
            })
            .await;

        task2_fut.await.unwrap();
        task1_fut.await.unwrap();
    }
}