1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::ffi::CStr;
use std::fs::File;
use std::io::{Seek, SeekFrom};
use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};

use libc::{
    self, c_char, c_int, c_long, c_uint, close, fcntl, ftruncate64, off64_t, syscall, F_ADD_SEALS,
    F_GET_SEALS, F_SEAL_GROW, F_SEAL_SEAL, F_SEAL_SHRINK, F_SEAL_WRITE, MFD_ALLOW_SEALING,
};

use errno;
use syscall_defines::linux::LinuxSyscall::SYS_memfd_create;

use {errno_result, Result};

/// A shared memory file descriptor and its size.
pub struct SharedMemory {
    fd: File,
    size: u64,
}

// from <sys/memfd.h>
const MFD_CLOEXEC: c_uint = 0x0001;

unsafe fn memfd_create(name: *const c_char, flags: c_uint) -> c_int {
    syscall(SYS_memfd_create as c_long, name, flags) as c_int
}

/// A set of memfd seals.
///
/// An enumeration of each bit can be found at `fcntl(2)`.
#[derive(Copy, Clone)]
pub struct MemfdSeals(i32);

impl MemfdSeals {
    /// Returns an empty set of memfd seals.
    #[inline]
    pub fn new() -> MemfdSeals {
        MemfdSeals(0)
    }

    /// Gets the raw bitmask of seals enumerated in `fcntl(2)`.
    #[inline]
    pub fn bitmask(self) -> i32 {
        self.0
    }

    /// True of the grow seal bit is present.
    #[inline]
    pub fn grow_seal(self) -> bool {
        self.0 & F_SEAL_GROW != 0
    }

    /// Sets the grow seal bit.
    #[inline]
    pub fn set_grow_seal(&mut self) {
        self.0 |= F_SEAL_GROW;
    }

    /// True of the shrink seal bit is present.
    #[inline]
    pub fn shrink_seal(self) -> bool {
        self.0 & F_SEAL_SHRINK != 0
    }

    /// Sets the shrink seal bit.
    #[inline]
    pub fn set_shrink_seal(&mut self) {
        self.0 |= F_SEAL_SHRINK;
    }

    /// True of the write seal bit is present.
    #[inline]
    pub fn write_seal(self) -> bool {
        self.0 & F_SEAL_WRITE != 0
    }

    /// Sets the write seal bit.
    #[inline]
    pub fn set_write_seal(&mut self) {
        self.0 |= F_SEAL_WRITE;
    }

    /// True of the seal seal bit is present.
    #[inline]
    pub fn seal_seal(self) -> bool {
        self.0 & F_SEAL_SEAL != 0
    }

    /// Sets the seal seal bit.
    #[inline]
    pub fn set_seal_seal(&mut self) {
        self.0 |= F_SEAL_SEAL;
    }
}

impl SharedMemory {
    /// Creates a new shared memory file descriptor with zero size.
    ///
    /// If a name is given, it will appear in `/proc/self/fd/<shm fd>` for the purposes of
    /// debugging. The name does not need to be unique.
    ///
    /// The file descriptor is opened with the close on exec flag and allows memfd sealing.
    pub fn new(name: Option<&CStr>) -> Result<SharedMemory> {
        let shm_name = name
            .map(|n| n.as_ptr())
            .unwrap_or(b"/crosvm_shm\0".as_ptr() as *const c_char);
        // The following are safe because we give a valid C string and check the
        // results of the memfd_create call.
        let fd = unsafe { memfd_create(shm_name, MFD_CLOEXEC | MFD_ALLOW_SEALING) };
        if fd < 0 {
            return errno_result();
        }

        let file = unsafe { File::from_raw_fd(fd) };

        Ok(SharedMemory { fd: file, size: 0 })
    }

    /// Constructs a `SharedMemory` instance from a file descriptor that represents shared memory.
    ///
    /// The size of the resulting shared memory will be determined using `File::seek`. If the given
    /// file's size can not be determined this way, this will return an error.
    pub fn from_raw_fd<T: IntoRawFd>(fd: T) -> Result<SharedMemory> {
        // Safe because the IntoRawFd trait indicates fd has unique ownership.
        let mut file = unsafe { File::from_raw_fd(fd.into_raw_fd()) };
        let file_size = file.seek(SeekFrom::End(0))?;
        Ok(SharedMemory {
            fd: file,
            size: file_size as u64,
        })
    }

    /// Gets the memfd seals that have already been added to this.
    ///
    /// This may fail if this instance was not constructed from a memfd.
    pub fn get_seals(&self) -> Result<MemfdSeals> {
        let ret = unsafe { fcntl(self.fd.as_raw_fd(), F_GET_SEALS) };
        if ret < 0 {
            return errno_result();
        }
        Ok(MemfdSeals(ret))
    }

    /// Adds the given set of memfd seals.
    ///
    /// This may fail if this instance was not constructed from a memfd with sealing allowed or if
    /// the seal seal (`F_SEAL_SEAL`) bit was already added.
    pub fn add_seals(&mut self, seals: MemfdSeals) -> Result<()> {
        let ret = unsafe { fcntl(self.fd.as_raw_fd(), F_ADD_SEALS, seals) };
        if ret < 0 {
            return errno_result();
        }
        Ok(())
    }

    /// Gets the size in bytes of the shared memory.
    ///
    /// The size returned here does not reflect changes by other interfaces or users of the shared
    /// memory file descriptor..
    pub fn size(&self) -> u64 {
        self.size
    }

    /// Sets the size in bytes of the shared memory.
    ///
    /// Note that if some process has already mapped this shared memory and the new size is smaller,
    /// that process may get signaled with SIGBUS if they access any page past the new size.
    pub fn set_size(&mut self, size: u64) -> Result<()> {
        let ret = unsafe { ftruncate64(self.fd.as_raw_fd(), size as off64_t) };
        if ret < 0 {
            return errno_result();
        }
        self.size = size;
        Ok(())
    }
}

impl AsRawFd for SharedMemory {
    fn as_raw_fd(&self) -> RawFd {
        self.fd.as_raw_fd()
    }
}

impl Into<File> for SharedMemory {
    fn into(self) -> File {
        self.fd
    }
}

/// Checks if the kernel we are running on has memfd_create. It was introduced in 3.17.
/// Only to be used from tests to prevent running on ancient kernels that won't
/// support the functionality anyways.
pub fn kernel_has_memfd() -> bool {
    unsafe {
        let fd = memfd_create(b"/test_memfd_create\0".as_ptr() as *const c_char, 0);
        if fd < 0 {
            if errno::Error::last().errno() == libc::ENOSYS {
                return false;
            }
            return true;
        }
        close(fd);
    }
    true
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::ffi::CString;
    use std::fs::read_link;
    use std::io::repeat;

    use data_model::VolatileMemory;

    use MemoryMapping;

    #[test]
    fn new() {
        if !kernel_has_memfd() {
            return;
        }
        let shm = SharedMemory::new(None).expect("failed to create shared memory");
        assert_eq!(shm.size(), 0);
    }

    #[test]
    fn new_sized() {
        if !kernel_has_memfd() {
            return;
        }
        let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
        shm.set_size(1024)
            .expect("failed to set shared memory size");
        assert_eq!(shm.size(), 1024);
    }

    #[test]
    fn new_huge() {
        if !kernel_has_memfd() {
            return;
        }
        let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
        shm.set_size(0x7fff_ffff_ffff_ffff)
            .expect("failed to set shared memory size");
        assert_eq!(shm.size(), 0x7fff_ffff_ffff_ffff);
    }

    #[test]
    fn new_too_huge() {
        if !kernel_has_memfd() {
            return;
        }
        let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
        shm.set_size(0x8000_0000_0000_0000).unwrap_err();
        assert_eq!(shm.size(), 0);
    }

    #[test]
    fn new_named() {
        if !kernel_has_memfd() {
            return;
        }
        let name = "very unique name";
        let cname = CString::new(name).unwrap();
        let shm = SharedMemory::new(Some(&cname)).expect("failed to create shared memory");
        let fd_path = format!("/proc/self/fd/{}", shm.as_raw_fd());
        let link_name =
            read_link(fd_path).expect("failed to read link of shared memory /proc/self/fd entry");
        assert!(link_name.to_str().unwrap().contains(name));
    }

    #[test]
    fn new_sealed() {
        if !kernel_has_memfd() {
            return;
        }
        let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
        let mut seals = shm.get_seals().expect("failed to get seals");
        assert_eq!(seals.bitmask(), 0);
        seals.set_seal_seal();
        shm.add_seals(seals).expect("failed to add seals");
        seals = shm.get_seals().expect("failed to get seals");
        assert!(seals.seal_seal());
        // Adding more seals should be rejected by the kernel.
        shm.add_seals(seals).unwrap_err();
    }

    #[test]
    fn mmap_page() {
        if !kernel_has_memfd() {
            return;
        }
        let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
        shm.set_size(4096)
            .expect("failed to set shared memory size");

        let mmap1 =
            MemoryMapping::from_fd(&shm, shm.size() as usize).expect("failed to map shared memory");
        let mmap2 =
            MemoryMapping::from_fd(&shm, shm.size() as usize).expect("failed to map shared memory");

        assert_ne!(
            mmap1.get_slice(0, 1).unwrap().as_ptr(),
            mmap2.get_slice(0, 1).unwrap().as_ptr()
        );

        mmap1
            .get_slice(0, 4096)
            .expect("failed to get mmap slice")
            .read_from(&mut repeat(0x45))
            .expect("failed to fill mmap slice");

        for i in 0..4096 {
            assert_eq!(mmap2.get_ref::<u8>(i).unwrap().load(), 0x45u8);
        }
    }

    #[test]
    fn mmap_page_offset() {
        if !kernel_has_memfd() {
            return;
        }
        let mut shm = SharedMemory::new(None).expect("failed to create shared memory");
        shm.set_size(8092)
            .expect("failed to set shared memory size");

        let mmap1 = MemoryMapping::from_fd_offset(&shm, shm.size() as usize, 4096)
            .expect("failed to map shared memory");
        let mmap2 =
            MemoryMapping::from_fd(&shm, shm.size() as usize).expect("failed to map shared memory");

        mmap1
            .get_slice(0, 4096)
            .expect("failed to get mmap slice")
            .read_from(&mut repeat(0x45))
            .expect("failed to fill mmap slice");

        for i in 0..4096 {
            assert_eq!(mmap2.get_ref::<u8>(i).unwrap().load(), 0);
        }
        for i in 4096..8092 {
            assert_eq!(mmap2.get_ref::<u8>(i).unwrap().load(), 0x45u8);
        }
    }
}