1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
// Copyright (c) 2022 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of synfx-dsp-jit. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.

use crate::locked::*;
use cranelift_jit::JITModule;
use std::cell::RefCell;
use std::collections::HashMap;
use std::mem;
use std::rc::Rc;
use std::sync::Arc;
use synfx_dsp::AtomicFloat;

/// Default size of undeclared buffers.
pub const BUFFER_DEFAULT_SIZE: usize = 16;

/// Auxilary variables to access directly from the machine code.
pub(crate) const AUX_VAR_COUNT: usize = 3;

pub(crate) const AUX_VAR_IDX_SRATE: usize = 0;
pub(crate) const AUX_VAR_IDX_ISRATE: usize = 1;
pub(crate) const AUX_VAR_IDX_RESET: usize = 2;

pub enum DSPNodeContextError {
    UnknownTable(usize),
    WrongTableSize { tbl_idx: usize, new_size: usize, old_size: usize },
}

/// Configures the environment that will be available to the [DSPFunction]
/// that is provided by [DSPNodeContext].
///
/// This could for instance be the number of atoms to be used by `atomr`/`atomw`, the
/// number and length of buffers or the audio samples...
#[derive(Debug, Clone)]
pub struct DSPContextConfig {
    /// The number of atoms available to `atomr`/`atomw`.
    pub atom_count: usize,
    /// The number of buffers available to `bufr`/`bufw`.
    pub buffer_count: usize,
    /// The number of available tables for the `tblr`/`tblw` operations.
    /// The tables can be swapped out at runtime using the [DSPNodeContext::send_table] method.
    pub tables: Vec<Arc<Vec<f32>>>,
}

impl Default for DSPContextConfig {
    fn default() -> Self {
        let mut tables = vec![];
        for _ in 0..16 {
            tables.push(Arc::new(vec![0.0; 1]));
        }
        Self { atom_count: 32, buffer_count: 16, tables }
    }
}

/// This table holds all the DSP state including the state of the individual DSP nodes
/// that were created by the [crate::jit::DSPFunctionTranslator].
pub struct DSPNodeContext {
    /// The environment configuration for the [DSPFunction] to operate in.
    pub(crate) config: DSPContextConfig,
    /// The global DSP state that is passed to all stateful DSP nodes.
    state: *mut DSPState,
    /// Persistent variables:
    persistent_var_index: usize,
    /// An assignment of persistent variables to their index in the `persistent_vars` vector.
    persistent_var_map: HashMap<String, usize>,
    /// A map of unique DSP node instances (identified by dsp_node_uid) that need private state.
    node_states: HashMap<u64, Box<DSPNodeState>>,
    /// A generation counter to determine whether some [DSPNodeState] instances in `node_states`
    /// can be cleaned up.
    generation: u64,
    /// Contains the currently compiled [DSPFunction].
    next_dsp_fun: Option<Box<DSPFunction>>,
    /// If enabled, some extra data will be collected.
    debug_enabled: bool,
    /// If [DSPNodeContext::set_debug] is enabled, this contains the most recently compiled piece
    /// of cranelift intermedite representation. You can receive this via [DSPNodeContext::get_ir_dump].
    pub(crate) cranelift_ir_dump: String,
    /// An array of atomic floats to exchange data with the live real time thread.
    /// These AtomicFloats will be shared via the [DSPState] structure and read/written using
    /// the `atomw` and `atomr` nodes.
    atoms: Vec<Arc<AtomicFloat>>,
    /// Holds the current buffer lengths, they are updated
    /// in [DSPNodeContext::finalize_dsp_function].
    buffer_lengths: Vec<usize>,
    /// Holds the most recently declared buffer lengths, these are used to determine
    /// if we need to send a buffer update with the [DSPFunction]
    /// in [DSPNodeContext::finalize_dsp_function].
    pub(crate) buffer_declare: Vec<usize>,
}

impl DSPNodeContext {
    fn new() -> Self {
        Self::new_with_config(DSPContextConfig::default())
    }

    fn new_with_config(config: DSPContextConfig) -> Self {
        let mut atoms = vec![];
        atoms.resize_with(config.atom_count, || Arc::new(AtomicFloat::new(0.0)));
        let atoms_state = atoms.clone();

        let mut buffer_lengths = vec![];
        let mut buffers = vec![];
        for _ in 0..config.buffer_count {
            buffers.push(vec![0.0; BUFFER_DEFAULT_SIZE]);
            buffer_lengths.push(BUFFER_DEFAULT_SIZE);
        }
        let buffers = LockedMutPtrs::new(buffers);
        let buffer_declare = buffer_lengths.clone();

        let tables = LockedPtrs::new(config.tables.clone());

        Self {
            config,
            state: Box::into_raw(Box::new(DSPState {
                x: 0.0,
                y: 0.0,
                srate: 44100.0,
                israte: 1.0 / 44100.0,
                atoms: atoms_state,
                buffers,
                tables,
            })),
            node_states: HashMap::new(),
            generation: 0,
            next_dsp_fun: None,
            persistent_var_map: HashMap::new(),
            persistent_var_index: 0,
            debug_enabled: false,
            cranelift_ir_dump: String::from(""),
            atoms,
            buffer_lengths,
            buffer_declare,
        }
    }

    /// Creates a new [DSPNodeContext] that you can pass into [crate::JIT::new].
    pub fn new_ref() -> Rc<RefCell<Self>> {
        Rc::new(RefCell::new(Self::new()))
    }

    pub(crate) fn init_dsp_function(&mut self) {
        self.generation += 1;
        self.next_dsp_fun = Some(Box::new(DSPFunction::new(self.state, self.generation)));
    }

    /// Enabled debug information collection. See also [DSPNodeContext::get_ir_dump].
    pub fn set_debug(&mut self, enabled: bool) {
        self.debug_enabled = enabled;
    }

    /// Returns if debug is enabled.
    pub fn debug_enabled(&self) -> bool {
        self.debug_enabled
    }

    /// If [DSPNodeContext::set_debug] is enabled, this will return the most recent
    /// IR code for the most recently compiled [DSPFunction].
    pub fn get_ir_dump(&self) -> &str {
        &self.cranelift_ir_dump
    }

    /// Returns you a reference to the specified atom connected with the DSP backend.
    /// These atoms can be read and written in the [DSPFunction] using the `atomr` and `atomw`
    /// nodes.
    pub fn atom(&self, idx: usize) -> Option<Arc<AtomicFloat>> {
        self.atoms.get(idx).cloned()
    }

    /// Retrieve the index into the most recently compiled [DSPFunction].
    /// To be used by [DSPFunction::access_persistent_var].
    pub fn get_persistent_variable_index_by_name(&self, pers_var_name: &str) -> Option<usize> {
        self.persistent_var_map.get(pers_var_name).map(|i| *i)
    }

    /// Retrieve the index into the persistent variable vector passed in as "&pv".
    pub(crate) fn get_persistent_variable_index(
        &mut self,
        pers_var_name: &str,
    ) -> Result<usize, String> {
        let index = if let Some(index) = self.persistent_var_map.get(pers_var_name) {
            *index
        } else {
            let index = self.persistent_var_index;
            self.persistent_var_index += 1;
            self.persistent_var_map.insert(pers_var_name.to_string(), index);
            index
        };

        if let Some(next_dsp_fun) = &mut self.next_dsp_fun {
            next_dsp_fun.touch_persistent_var_index(index);
            Ok(index)
        } else {
            Err("No DSPFunction in DSPNodeContext".to_string())
        }
    }

    /// Tries to send a new table to the backend. You have to make sure the table
    /// has exactly the same size as the previous table given in the [DSPContextConfig].
    /// Otherwise a [DSPNodeContextError] is returned.
    pub fn send_table(
        &mut self,
        tbl_idx: usize,
        table: Arc<Vec<f64>>,
    ) -> Result<(), DSPNodeContextError> {
        let config_tbl_len = 0;

        // Err(DSPNodeContextError::UnknwonTable(tbl_idx)

        Err(DSPNodeContextError::WrongTableSize {
            tbl_idx,
            new_size: table.len(),
            old_size: config_tbl_len,
        })
    }

    /// Adds a [DSPNodeState] to the currently compiled [DSPFunction] and returns
    /// the index into the node state vector in the [DSPFunction], so that the JIT
    /// code can index into that vector to find the right state pointer.
    pub(crate) fn add_dsp_node_instance(
        &mut self,
        node_type: Arc<dyn DSPNodeType>,
        dsp_node_uid: u64,
    ) -> Result<usize, String> {
        if let Some(next_dsp_fun) = &mut self.next_dsp_fun {
            if next_dsp_fun.has_dsp_node_state_uid(dsp_node_uid) {
                return Err(format!(
                    "node_state_uid has been used multiple times in same AST: {}",
                    dsp_node_uid
                ));
            }

            if !self.node_states.contains_key(&dsp_node_uid) {
                self.node_states.insert(
                    dsp_node_uid,
                    Box::new(DSPNodeState::new(dsp_node_uid, node_type.clone())),
                );
            }

            if let Some(state) = self.node_states.get_mut(&dsp_node_uid) {
                if state.node_type().name() != node_type.name() {
                    return Err(format!(
                        "Different DSPNodeType for uid {}: {} != {}",
                        dsp_node_uid,
                        state.node_type().name(),
                        node_type.name()
                    ));
                }

                Ok(next_dsp_fun.install(state))
            } else {
                Err(format!("NodeState does not exist, but it should... bad! {}", dsp_node_uid))
            }
        } else {
            Err("No DSPFunction in DSPNodeContext".to_string())
        }
    }

    pub(crate) fn finalize_dsp_function(
        &mut self,
        function_ptr: *const u8,
        module: JITModule,
    ) -> Option<Box<DSPFunction>> {
        if let Some(mut next_dsp_fun) = self.next_dsp_fun.take() {
            for (i, (len, declare)) in
                self.buffer_lengths.iter().zip(self.buffer_declare.iter()).enumerate()
            {
                if *len != *declare {
                    next_dsp_fun.add_buffer_update(i, *declare);
                }
            }

            for (len, declare) in self.buffer_lengths.iter_mut().zip(self.buffer_declare.iter_mut())
            {
                *len = *declare;
            }

            next_dsp_fun.set_function_ptr(function_ptr, module);

            for (_, node_state) in self.node_states.iter_mut() {
                node_state.set_initialized();
            }

            Some(next_dsp_fun)
        } else {
            None
        }
    }

    /// If you received a [DSPFunction] back from the audio thread, you should
    /// pass it into this function. It will make sure to purge old unused [DSPNodeState] instances.
    pub fn cleanup_dsp_fun_after_user(&mut self, _fun: Box<DSPFunction>) {
        // TODO: Garbage collect and free unused node state!
        //       But this must happen by the backend/frontend thread separation.
        //       Best would be to provide DSPNodeContext::cleaup_dsp_function_after_use(DSPFunction).
    }

    /// You must call this after all [DSPFunction] instances compiled with this state are done executing.
    /// If you don't call this, you might get a memory leak.
    /// The API is a bit manual at this point, because usually [DSPFunction]
    /// will be executed on a different thread, and synchronizing this would come with
    /// additional overhead that I wanted to save.
    pub fn free(&mut self) {
        if !self.state.is_null() {
            let _ = unsafe { Box::from_raw(self.state) };
            self.state = std::ptr::null_mut();
        }
    }
}

impl Drop for DSPNodeContext {
    fn drop(&mut self) {
        if !self.state.is_null() {
            eprintln!("WBlockDSP JIT DSPNodeContext not cleaned up on exit. Forgot to call free() or keep it alive long enough?");
        }
    }
}

/// This structure holds all the [DSPNodeType] definitions and provides
/// them to the [crate::JIT] and [crate::jit::DSPFunctionTranslator].
pub struct DSPNodeTypeLibrary {
    type_by_name: HashMap<String, Arc<dyn DSPNodeType>>,
    types: Vec<Arc<dyn DSPNodeType>>,
}

impl DSPNodeTypeLibrary {
    /// Create a new instance of this.
    pub fn new() -> Self {
        Self { types: vec![], type_by_name: HashMap::new() }
    }

    /// Add the given [DSPNodeType] to this library.
    pub fn add(&mut self, typ: Arc<dyn DSPNodeType>) {
        self.types.push(typ.clone());
        self.type_by_name.insert(typ.name().to_string(), typ);
    }

    /// Retrieves a [DSPNodeType] by it's name.
    pub fn get_type_by_name(&self, typ_name: &str) -> Option<Arc<dyn DSPNodeType>> {
        self.type_by_name.get(typ_name).cloned()
    }

    /// Iterate through all types in the Library:
    ///
    ///```
    /// use synfx_dsp_jit::*;
    ///
    /// let lib = DSPNodeTypeLibrary::new();
    /// // ...
    /// lib.for_each(|typ| -> Result<(), ()> {
    ///     println!("Type available: {}", typ.name());
    ///     Ok(())
    /// }).expect("no error");
    ///```
    pub fn for_each<T, F: FnMut(&Arc<dyn DSPNodeType>) -> Result<(), T>>(
        &self,
        mut f: F,
    ) -> Result<(), T> {
        for t in self.types.iter() {
            f(t)?;
        }
        Ok(())
    }
}

/// This macro can help you defining new stateful DSP nodes.
///
///```
/// use synfx_dsp_jit::*;
///
/// struct MyDSPNode {
///     value: f64,
/// }
///
/// impl MyDSPNode {
///     fn reset(&mut self, _state: &mut DSPState) {
///         *self = Self::default();
///     }
/// }
///
/// impl Default for MyDSPNode {
///     fn default() -> Self {
///         Self { value: 0.0 }
///     }
/// }
///
/// extern "C" fn process_my_dsp_node(my_state: *mut MyDSPNode) -> f64 {
///     let mut my_state = unsafe { &mut *my_state };
///     my_state.value += 1.0;
///     my_state.value
/// }
///
/// // DIYNodeType is the type that is newly defined here, that one you
/// // pass to DSPNodeTypeLibrary::add
/// synfx_dsp_jit::stateful_dsp_node_type! {
///     DIYNodeType, MyDSPNode => process_my_dsp_node "my_dsp" "Sr"
///     doc
///     "This is a simple counter. It counts by increments of 1.0 everytime it's called."
///     inputs
///     outputs
///     0 "sum"
/// }
///
/// // Then use the type by adding it:
/// fn make_library() -> DSPNodeTypeLibrary {
///     let mut lib = DSPNodeTypeLibrary::new();
///     lib.add(DIYNodeType::new_ref());
///     lib
/// }
///```
///
/// You might've guessed, `process_my_dsp_node` is the function identifier in the Rust
/// code. The `"my_dsp"` is the name you can use to refer to this in [crate::ASTNode::Call]:
/// `ASTNode::Call("my_dsp".to_string(), 1, ...)`.
/// **Attention:** Make sure to provide unique state IDs here!
///
/// The `"Sr"` is a string that specifies the signature of the function. Following characters
/// are available:
///
/// - "v" - A floating point value
/// - "D" - The global [crate::DSPState] pointer
/// - "S" - The node specific state pointer (`MyDSPNode`)
/// - "M" - A pointer to the multi return value array, of type `*mut [f64; 5]`. These can be accessed
/// by the variables "%1" to "%5" after the call.
/// - "r" - Must be specified as last one, defines that this function returns something.
///
#[macro_export]
macro_rules! stateful_dsp_node_type {
    ($node_type: ident, $struct_type: ident =>
     $func_name: ident $jit_name: literal $signature: literal
     doc $doc: literal
     inputs $($idx: literal $inp: literal)*
     outputs $($idxo: literal $out: literal)*) => {
        struct $node_type;
        impl $node_type {
            fn new_ref() -> std::sync::Arc<Self> {
                std::sync::Arc::new(Self {})
            }
        }
        impl DSPNodeType for $node_type {
            fn name(&self) -> &str {
                $jit_name
            }

            fn function_ptr(&self) -> *const u8 {
                $func_name as *const u8
            }

            fn signature(&self, i: usize) -> Option<DSPNodeSigBit> {
                match $signature.chars().nth(i) {
                    Some('v') => Some(DSPNodeSigBit::Value),
                    Some('D') => Some(DSPNodeSigBit::DSPStatePtr),
                    Some('S') => Some(DSPNodeSigBit::NodeStatePtr),
                    Some('M') => Some(DSPNodeSigBit::MultReturnPtr),
                    _ => None,
                }
            }

            fn has_return_value(&self) -> bool {
                $signature.find("r").is_some()
            }

            fn reset_state(&self, dsp_state: *mut DSPState, state_ptr: *mut u8) {
                let ptr = state_ptr as *mut $struct_type;
                unsafe {
                    (*ptr).reset(&mut (*dsp_state));
                }
            }

            fn allocate_state(&self) -> Option<*mut u8> {
                Some(Box::into_raw(Box::new($struct_type::default())) as *mut u8)
            }

            fn deallocate_state(&self, ptr: *mut u8) {
                let _ = unsafe { Box::from_raw(ptr as *mut $struct_type) };
            }

            fn documentation(&self) -> &str {
                $doc
            }

            fn input_names(&self, index: usize) -> Option<&str> {
                match index {
                    $($idx => Some($inp),)*
                    _ => None
                }
            }

            fn input_index_by_name(&self, name: &str) -> Option<usize> {
                match name {
                    $($inp => Some($idx),)*
                    _ => None
                }
            }

            fn output_names(&self, index: usize) -> Option<&str> {
                match index {
                    $($idxo => Some($out),)*
                    _ => None
                }
            }

            fn output_index_by_name(&self, name: &str) -> Option<usize> {
                match name {
                    $($out => Some($idxo),)*
                    _ => None
                }
            }
        }
    };
}

/// This macro can help you defining new stateless DSP nodes.
///
///```
/// use synfx_dsp_jit::*;
///
/// extern "C" fn process_mul2(v: f64) -> f64 {
///     v * 2.0
/// }
///
/// synfx_dsp_jit::stateless_dsp_node_type! {
///     Mul2NodeType => process_mul2 "mul2" "vr"
///     doc
///     "A simple multiplication by 2.0. Using '*' is simpler thought..."
///     inputs
///     0 ""
///     outputs
///     0 ""
/// }
///
/// // Then use the type by adding it:
/// fn make_library() -> DSPNodeTypeLibrary {
///     let mut lib = DSPNodeTypeLibrary::new();
///     lib.add(Mul2NodeType::new_ref());
///     lib
/// }
///```
///
/// The `"vr"` is a string that specifies the signature of the function. Following characters
/// are available:
///
/// - "v" - A floating point value
/// - "D" - The global [crate::DSPState] pointer
/// - "M" - A pointer to the multi return value array, of type `*mut [f64; 5]`. These can be accessed
/// by the variables "%1" to "%5" after the call.
/// - "r" - Must be specified as last one, defines that this function returns something.
///
#[macro_export]
macro_rules! stateless_dsp_node_type {
    ($node_type: ident =>
     $func_name: ident $jit_name: literal $signature: literal
     doc $doc: literal
     inputs $($idx: literal $inp: literal)*
     outputs $($idxo: literal $out: literal)*) => {
        #[derive(Default)]
        struct $node_type;
        impl $node_type {
            #[allow(dead_code)]
            fn new_ref() -> std::sync::Arc<Self> {
                std::sync::Arc::new(Self {})
            }
        }
        impl DSPNodeType for $node_type {
            fn name(&self) -> &str {
                $jit_name
            }

            fn function_ptr(&self) -> *const u8 {
                $func_name as *const u8
            }

            fn signature(&self, i: usize) -> Option<DSPNodeSigBit> {
                match $signature.chars().nth(i) {
                    Some('v') => Some(DSPNodeSigBit::Value),
                    Some('D') => Some(DSPNodeSigBit::DSPStatePtr),
                    Some('M') => Some(DSPNodeSigBit::MultReturnPtr),
                    _ => None,
                }
            }

            fn has_return_value(&self) -> bool {
                $signature.find("r").is_some()
            }

            fn documentation(&self) -> &str {
                $doc
            }

            fn input_names(&self, index: usize) -> Option<&str> {
                match index {
                    $($idx => Some($inp),)*
                    _ => None
                }
            }

            fn input_index_by_name(&self, name: &str) -> Option<usize> {
                match name {
                    $($inp => Some($idx),)*
                    _ => None
                }
            }

            fn output_names(&self, index: usize) -> Option<&str> {
                match index {
                    $($idxo => Some($out),)*
                    _ => None
                }
            }

            fn output_index_by_name(&self, name: &str) -> Option<usize> {
                match name {
                    $($out => Some($idxo),)*
                    _ => None
                }
            }
        }
    };
}

/// This is the result of the JIT compiled [crate::ast::ASTNode] tree.
/// You can send this structure to the audio backend thread and execute it
/// using [DSPFunction::exec].
///
/// To execute this [DSPFunction] properly, you have to call [DSPFunction::init]
/// once the newly allocated structure is received by the DSP executing thread.
///
/// If the sample rate changes or the stateful DSP stuff must be resetted,
/// you should call [DSPFunction::reset] or [DSPFunction::set_sample_rate].
/// Of course also only on the DSP executing thread.
pub struct DSPFunction {
    state: *mut DSPState,
    /// Contains the types of the corresponding `node_states`. The [DSPNodeType] is
    /// necessary to reset the state pointed to by the pointers in `node_states`.
    node_state_types: Vec<Arc<dyn DSPNodeType>>,
    /// Contains the actual pointers to the state that was constructed by the corresponding [DSPNodeState].
    node_states: Vec<*mut u8>,
    /// Constains indices into `node_states`, so that they can be reset/initialized by [DSPFunction::init].
    /// Only contains recently added (as determined by [DSPNodeContext]) and uninitialized state indices.
    node_state_init_reset: Vec<usize>,
    /// Keeps the node_state_uid of the [DSPNodeState] pieces used already in this
    /// function. It's for error detection when building this [DSPFunction], to prevent
    /// the user from evaluating a stateful DSP node multiple times.
    node_state_uids: Vec<u64>,
    /// Generation of the corresponding [DSPNodeContext].
    dsp_ctx_generation: u64,
    /// The JITModule that is the home for the `function` pointer. It must be kept alive
    /// as long as the `function` pointer is in use.
    module: Option<JITModule>,
    /// Storage of persistent variables:
    persistent_vars: Vec<f64>,
    /// Buffer updates for the buffers in [DSPState], these are determined and set
    /// in [DSPNodeContext::finalize_dsp_function].
    buffer_updates: Option<Vec<(usize, Vec<f64>)>>,
    /// This is just a flag as precaution, in case init() is accidentally called
    /// multiple times.
    buffer_updates_done: bool,
    /// Auxilary variables to access directly from the machine code. Holds information such as
    /// the sample rate or the inverse of the sample rate.
    aux_vars: [f64; AUX_VAR_COUNT],
    /// Is true directly after reset.
    resetted: bool,
    function: Option<
        fn(
            f64,
            f64,
            f64,
            f64,
            f64,
            f64,
            *mut f64,
            *mut f64,
            *mut f64,
            *mut DSPState,
            *const *mut u8,
            *mut f64,
            *mut f64,
            *const *mut f64,
            *const u64,
            *const *const f32,
            *const u64,
        ) -> f64,
    >,
}

unsafe impl Send for DSPFunction {}
unsafe impl Sync for DSPFunction {}

impl DSPFunction {
    /// Used by [DSPNodeContext] to create a new instance of this.
    pub(crate) fn new(state: *mut DSPState, dsp_ctx_generation: u64) -> Self {
        Self {
            state,
            node_state_types: vec![],
            node_states: vec![],
            node_state_init_reset: vec![],
            node_state_uids: vec![],
            persistent_vars: vec![],
            aux_vars: [0.0; AUX_VAR_COUNT],
            function: None,
            dsp_ctx_generation,
            module: None,
            resetted: false,
            buffer_updates: Some(vec![]),
            buffer_updates_done: true,
        }
    }

    /// At the end of the compilation the [crate::JIT] will put the resulting function
    /// pointer into this function.
    pub(crate) fn set_function_ptr(&mut self, function: *const u8, module: JITModule) {
        self.module = Some(module);
        self.function = Some(unsafe {
            mem::transmute::<
                _,
                fn(
                    f64,
                    f64,
                    f64,
                    f64,
                    f64,
                    f64,
                    *mut f64,
                    *mut f64,
                    *mut f64,
                    *mut DSPState,
                    *const *mut u8,
                    *mut f64,
                    *mut f64,
                    *const *mut f64,
                    *const u64,
                    *const *const f32,
                    *const u64,
                ) -> f64,
            >(function)
        });
    }

    /// Appends a buffer update to this [DSPFunction], to update the buffers
    /// according to [crate::ast::ASTNode::BufDeclare]. Buffers are only updated
    /// if they get a new length though.
    pub(crate) fn add_buffer_update(&mut self, buf_idx: usize, length: usize) {
        if let Some(updates) = &mut self.buffer_updates {
            updates.push((buf_idx, vec![0.0; length]));
        }
        self.buffer_updates_done = false;
    }

    /// This function must be called before [DSPFunction::exec]!
    /// otherwise your states might not be properly initialized or preserved.
    ///
    /// If you recompiled a function, pass the old one on the audio thread to
    /// the `previous_function` parameter here. It will take care of preserving
    /// state, such as persistent variables (those that start with "*": `crate::build::var("*abc")`).
    pub fn init(&mut self, srate: f64, previous_function: Option<&DSPFunction>) {
        if let Some(previous_function) = previous_function {
            let prev_len = previous_function.persistent_vars.len();
            let now_len = self.persistent_vars.len();
            let len = prev_len.min(now_len);
            self.persistent_vars[0..len].copy_from_slice(&previous_function.persistent_vars[0..len])
        } else {
            self.resetted = true;
        }

        if !self.buffer_updates_done {
            if let Some(mut updates) = self.buffer_updates.take() {
                for (idx, new_vec) in updates.iter_mut() {
                    let _ = self.swap_buffer(*idx, new_vec, true);
                }
                self.buffer_updates = Some(updates);
            }
            self.buffer_updates_done = true;
        }

        unsafe {
            (*self.state).srate = srate;
            (*self.state).israte = 1.0 / srate;
        }
        self.aux_vars[AUX_VAR_IDX_SRATE] = srate;
        self.aux_vars[AUX_VAR_IDX_ISRATE] = 1.0 / srate;

        for idx in self.node_state_init_reset.iter() {
            let typ = &self.node_state_types[*idx as usize];
            let ptr = self.node_states[*idx as usize];
            typ.reset_state(self.state, ptr);
        }
    }

    /// Swaps out the buffer at the given index with the new buffer. The contents
    /// of the Vec will be swapped with the current contents of the buffer, unless
    /// you specify `preserve_old_samples` which will try to preserve as many samples
    /// from the previous buffer as possible.
    pub fn swap_buffer(
        &mut self,
        index: usize,
        new_buf: &mut Vec<f64>,
        preserve_old_samples: bool,
    ) -> Result<(), ()> {
        unsafe {
            if index >= (*self.state).buffers.len() {
                return Err(());
            }
            if preserve_old_samples {
                let old_len = (*self.state).buffers.element_len(index);
                let old_vec = (*self.state).buffers.pointers()[index];
                let min_len = old_len.min(new_buf.len());
                std::ptr::copy_nonoverlapping(old_vec, new_buf.as_mut_ptr(), min_len);
            }
            let _ = (*self.state).buffers.swap_element(index, new_buf);
        }
        Ok(())
    }

    /// Swaps out the table at the given index with the new table.
    pub fn swap_table(
        &mut self,
        index: usize,
        new_table: &mut Arc<Vec<f32>>,
    ) -> Result<(), ()> {
        unsafe {
            if index >= (*self.state).tables.len() {
                return Err(());
            }
            let _ = (*self.state).tables.swap_element(index, new_table);
        }
        Ok(())
    }

    /// If the audio thread changes the sampling rate, call this function, it will update
    /// the [DSPState] and reset all [DSPNodeState]s.
    pub fn set_sample_rate(&mut self, srate: f64) {
        unsafe {
            (*self.state).srate = srate;
            (*self.state).israte = 1.0 / srate;
        }
        self.aux_vars[AUX_VAR_IDX_SRATE] = srate;
        self.aux_vars[AUX_VAR_IDX_ISRATE] = 1.0 / srate;

        self.reset();
    }

    /// If the DSP state needs to be resetted, call this on the audio thread.
    pub fn reset(&mut self) {
        self.resetted = true;
        for (typ, ptr) in self.node_state_types.iter().zip(self.node_states.iter_mut()) {
            typ.reset_state(self.state, *ptr);
        }
        self.persistent_vars.fill(0.0);
    }

    /// Use this to retrieve a pointer to the [DSPState] to access it between
    /// calls to [DSPFunction::exec].
    pub fn get_dsp_state_ptr(&self) -> *mut DSPState {
        self.state
    }

    /// Use this to access the [DSPState] pointer between calls to [DSPFunction::exec].
    ///
    /// # Safety
    ///
    /// You must not create multiple aliasing references from that DSP state!
    pub unsafe fn with_dsp_state<R, F: FnMut(*mut DSPState) -> R>(&mut self, mut f: F) -> R {
        f(self.get_dsp_state_ptr())
    }

    /// Use this to access the state of a specific DSP node state pointer between
    /// calls to [DSPFunction::exec].
    ///
    /// The `node_state_uid` and the type you pass here must match! It's your responsibility
    /// to make sure this works!
    ///
    /// # Safety
    ///
    /// You absolutely must know which ID has which [DSPNodeType], otherwise this will badly go wrong!
    ///
    ///```
    /// use synfx_dsp_jit::*;
    /// use synfx_dsp_jit::build::*;
    /// use synfx_dsp_jit::stdlib::AccumNodeState;
    ///
    /// let (ctx, mut fun) = instant_compile_ast(call("accum", 21, &[var("in1"), literal(0.0)])).unwrap();
    ///
    /// fun.init(44100.0, None);
    /// // Accumulate 42.0 here:
    /// fun.exec_2in_2out(21.0, 0.0);
    /// fun.exec_2in_2out(21.0, 0.0);
    ///
    /// unsafe {
    ///     // Check 42.0 and set 99.0
    ///     fun.with_node_state(21, |state: *mut AccumNodeState| {
    ///         assert!(((*state).value - 42.0).abs() < 0.0001);
    ///         (*state).value = 99.0;
    ///     })
    /// };
    ///
    /// // Accumulate up to 100.0 here:
    /// let (_, _, ret) = fun.exec_2in_2out(1.0, 0.0);
    /// assert!((ret - 100.0).abs() < 0.0001);
    ///
    /// ctx.borrow_mut().free();
    ///```
    #[allow(clippy::result_unit_err)]
    pub unsafe fn with_node_state<T, R, F: FnMut(*mut T) -> R>(
        &mut self,
        node_state_uid: u64,
        mut f: F,
    ) -> Result<R, ()> {
        if let Some(state_ptr) = self.get_node_state_ptr(node_state_uid) {
            Ok(f(state_ptr as *mut T))
        } else {
            Err(())
        }
    }

    /// Retrieves the DSP node state pointer for a certain unique node state id.
    ///
    /// # Safety
    ///
    /// You are responsible afterwards for knowing what type the actual pointer is of.
    pub fn get_node_state_ptr(&self, node_state_uid: u64) -> Option<*mut u8> {
        for (i, uid) in self.node_state_uids.iter().enumerate() {
            if *uid == node_state_uid {
                return Some(self.node_states[i]);
            }
        }

        None
    }

    /// Helper function, it lets you specify only the contents of the parameters
    /// `"in1"` and `"in2"`. It also returns you the values for `"&sig1"` and `"&sig2"`
    /// after execution. The third value is the return value of the compiled expression.
    pub fn exec_2in_2out(&mut self, in1: f64, in2: f64) -> (f64, f64, f64) {
        let mut s1 = 0.0;
        let mut s2 = 0.0;
        let r = self.exec(in1, in2, 0.0, 0.0, 0.0, 0.0, &mut s1, &mut s2);
        (s1, s2, r)
    }

    /// Executes the machine code and provides the following parameters in order:
    /// `"in1", "in2", "alpha", "beta", "delta", "gamma", "&sig1", "&sig2"`
    ///
    /// It returns the return value of the computation. For addition outputs you can
    /// write to `"&sig1"` or `"&sig2"` with for instance: `assign(var("&sig1"), literal(10.0))`.
    #[allow(clippy::too_many_arguments)]
    pub fn exec(
        &mut self,
        in1: f64,
        in2: f64,
        alpha: f64,
        beta: f64,
        delta: f64,
        gamma: f64,
        sig1: &mut f64,
        sig2: &mut f64,
    ) -> f64 {
        {
            self.aux_vars[AUX_VAR_IDX_RESET] = if self.resetted {
                self.resetted = false;
                1.0
            } else {
                0.0
            };
        }
        let states_ptr: *const *mut u8 = self.node_states.as_mut_ptr();
        let pers_vars_ptr: *mut f64 = self.persistent_vars.as_mut_ptr();
        let aux_vars: *mut f64 = self.aux_vars.as_mut_ptr();
        let bufs: *const *mut f64 = unsafe { (*self.state).buffers.pointers().as_ptr() };
        let buf_lens: *const u64 = unsafe { (*self.state).buffers.lens().as_ptr() };
        let tables: *const *const f32 = unsafe { (*self.state).tables.pointers().as_ptr() };
        let table_lens: *const u64 = unsafe { (*self.state).tables.lens().as_ptr() };
        let mut multi_returns = [0.0; 5];

        (unsafe { self.function.unwrap_unchecked() })(
            in1,
            in2,
            alpha,
            beta,
            delta,
            gamma,
            sig1,
            sig2,
            aux_vars,
            self.state,
            states_ptr,
            pers_vars_ptr,
            (&mut multi_returns) as *mut f64,
            bufs,
            buf_lens,
            tables,
            table_lens,
        )
    }

    pub(crate) fn install(&mut self, node_state: &mut DSPNodeState) -> usize {
        let idx = self.node_states.len();
        node_state.mark(self.dsp_ctx_generation, idx);

        self.node_states.push(node_state.ptr());
        self.node_state_types.push(node_state.node_type());
        self.node_state_uids.push(node_state.uid());

        if !node_state.is_initialized() {
            self.node_state_init_reset.push(idx);
        }

        idx
    }

    pub(crate) fn touch_persistent_var_index(&mut self, idx: usize) {
        if idx >= self.persistent_vars.len() {
            self.persistent_vars.resize(idx + 1, 0.0);
        }
    }

    /// Gives you access to the persistent variables. To get the index of the
    /// persistent variable you must use [DSPNodeContext::get_persistent_variable_index_by_name].
    pub fn access_persistent_var(&mut self, idx: usize) -> Option<&mut f64> {
        self.persistent_vars.get_mut(idx)
    }

    /// Checks if the DSP function actually has the state for a certain unique DSP node state ID.
    pub fn has_dsp_node_state_uid(&self, uid: u64) -> bool {
        for i in self.node_state_uids.iter() {
            if *i == uid {
                return true;
            }
        }

        false
    }
}

impl Drop for DSPFunction {
    fn drop(&mut self) {
        unsafe {
            if let Some(module) = self.module.take() {
                module.free_memory();
            }
        };
    }
}

/// The global DSP state that all stateful [DSPNodeType] DSP nodes share.
pub struct DSPState {
    pub x: f64,
    pub y: f64,
    pub srate: f64,
    pub israte: f64,
    pub atoms: Vec<Arc<AtomicFloat>>,
    pub buffers: LockedMutPtrs<Vec<f64>, f64>,
    pub tables: LockedPtrs<Arc<Vec<f32>>, f32>,
}

/// An enum to specify the position of value and [DSPState] and [DSPNodeState] parameters
/// for the JIT compiler.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum DSPNodeSigBit {
    /// Signature placeholder for f64
    Value,
    /// Signature placeholder for the [DSPState] pointer
    DSPStatePtr,
    /// Signature placeholder for the [DSPNodeState] pointer that belongs to this node
    NodeStatePtr,
    /// Signature placeholder for a pointer to the multi return value array (max size is 5! `*mut [f64; 5]`)
    MultReturnPtr,
}

/// This trait allows you to define your own DSP stateful and stateless primitives.
/// Among defining a few important properties for the compiler, it handles allocation and
/// deallocation of the state that belongs to a DSPNodeType.
///
/// ## Stateless DSP Nodes/Primitives
///
/// Here is a simple example how to define a stateless DSP function:
///
///```
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// use synfx_dsp_jit::{DSPNodeType, DSPNodeSigBit, DSPNodeTypeLibrary};
///
/// let lib = Rc::new(RefCell::new(DSPNodeTypeLibrary::new()));
///
/// pub struct MyPrimitive;
///
/// extern "C" fn my_primitive_function(a: f64, b: f64) -> f64 {
///    (2.0 * a * b.cos()).sin()
/// }
///
/// impl DSPNodeType for MyPrimitive {
///     // make a name, so you can refer to it via `ASTNode::Call("my_prim", ...)`.
///     fn name(&self) -> &str { "my_prim" }
///
///     // Provide a pointer:
///     fn function_ptr(&self) -> *const u8 { my_primitive_function as *const u8 }
///
///     // Define the function signature for the JIT compiler:
///     fn signature(&self, i: usize) -> Option<DSPNodeSigBit> {
///         match i {
///             0 | 1 => Some(DSPNodeSigBit::Value),
///             _ => None, // Return None to signal we only take 2 parameters
///         }
///     }
///
///     // Tell the JIT compiler that you return a value:
///     fn has_return_value(&self) -> bool { true }
///
///     // The other trait functions do not need to be provided, because this is
///     // a stateless primitive.
/// }
///
/// lib.borrow_mut().add(std::sync::Arc::new(MyPrimitive {}));
///
/// use synfx_dsp_jit::{ASTFun, JIT, DSPNodeContext};
/// let ctx = DSPNodeContext::new_ref();
/// let jit = JIT::new(lib.clone(), ctx.clone());
///
/// use synfx_dsp_jit::build::*;
/// let mut fun = jit.compile(ASTFun::new(
///     op_add(call("my_prim", 0, &[var("in1"), var("in2")]), literal(10.0))))
///     .expect("no compile error");
///
/// fun.init(44100.0, None);
///
/// let (_s1, _s2, ret) = fun.exec_2in_2out(1.0, 1.5);
///
/// assert!((ret - 10.1410029).abs() < 0.000001);
///
/// ctx.borrow_mut().free();
///```
///
/// ## Stateful DSP Nodes/Primitives
///
/// Here is a simple example how to define a stateful DSP function,
/// in this example just an accumulator.
///
/// There is a little helper macro that might help you: [crate::stateful_dsp_node_type]
///
///```
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// use synfx_dsp_jit::{DSPNodeType, DSPState, DSPNodeSigBit, DSPNodeTypeLibrary};
///
/// let lib = Rc::new(RefCell::new(DSPNodeTypeLibrary::new()));
///
/// pub struct MyPrimitive;
///
/// struct MyPrimAccumulator {
///     count: f64,
/// }
///
/// // Be careful defining the signature of this primitive, there is no safety net here!
/// // Check twice with DSPNodeType::signature()!
/// extern "C" fn my_primitive_accum(add: f64, state: *mut u8) -> f64 {
///     let state = unsafe { &mut *(state as *mut MyPrimAccumulator) };
///     state.count += add;
///     state.count
/// }
///
/// impl DSPNodeType for MyPrimitive {
///     // make a name, so you can refer to it via `ASTNode::Call("my_prim", ...)`.
///     fn name(&self) -> &str { "accum" }
///
///     // Provide a pointer:
///     fn function_ptr(&self) -> *const u8 { my_primitive_accum as *const u8 }
///
///     // Define the function signature for the JIT compiler. Be really careful though,
///     // There is no safety net here.
///     fn signature(&self, i: usize) -> Option<DSPNodeSigBit> {
///         match i {
///             0 => Some(DSPNodeSigBit::Value),
///             1 => Some(DSPNodeSigBit::NodeStatePtr),
///             _ => None, // Return None to signal we only take 1 parameter
///         }
///     }
///
///     // Tell the JIT compiler that you return a value:
///     fn has_return_value(&self) -> bool { true }
///
///     // Specify how to reset the state:
///     fn reset_state(&self, _dsp_state: *mut DSPState, state_ptr: *mut u8) {
///         unsafe { (*(state_ptr as *mut MyPrimAccumulator)).count = 0.0 };
///     }
///
///     // Allocate our state:
///     fn allocate_state(&self) -> Option<*mut u8> {
///         Some(Box::into_raw(Box::new(MyPrimAccumulator { count: 0.0 })) as *mut u8)
///     }
///
///     // Deallocate our state:
///     fn deallocate_state(&self, ptr: *mut u8) {
///         let _ = unsafe { Box::from_raw(ptr as *mut MyPrimAccumulator) };
///     }
/// }
///
/// lib.borrow_mut().add(std::sync::Arc::new(MyPrimitive {}));
///
/// use synfx_dsp_jit::{ASTFun, JIT, DSPNodeContext};
/// let ctx = DSPNodeContext::new_ref();
/// let jit = JIT::new(lib.clone(), ctx.clone());
///
/// use synfx_dsp_jit::build::*;
/// let mut fun =
///     jit.compile(ASTFun::new(call("accum", 0, &[var("in1")]))).expect("no compile error");
///
/// fun.init(44100.0, None);
///
/// let (_s1, _s2, ret) = fun.exec_2in_2out(1.0, 0.0);
/// assert!((ret - 1.0).abs() < 0.000001);
///
/// let (_s1, _s2, ret) = fun.exec_2in_2out(1.0, 0.0);
/// assert!((ret - 2.0).abs() < 0.000001);
///
/// let (_s1, _s2, ret) = fun.exec_2in_2out(1.0, 0.0);
/// assert!((ret - 3.0).abs() < 0.000001);
///
/// // You can cause a reset eg. with fun.set_sample_rate() or fun.reset():
/// fun.reset();
///
/// // Counting will restart:
/// let (_s1, _s2, ret) = fun.exec_2in_2out(1.0, 0.0);
/// assert!((ret - 1.0).abs() < 0.000001);
///
/// ctx.borrow_mut().free();
///```
pub trait DSPNodeType: Sync + Send {
    /// The name of this DSP node, by this name it can be called from
    /// the [crate::ast::ASTFun].
    fn name(&self) -> &str;

    /// Document what this node does and how to use it.
    /// Format should be in Markdown.
    ///
    /// Documenting the node will make it easier for library implementors
    /// and even eventual end users to figure out what this node
    /// does and how to use it.
    ///
    /// For instance, this text should define what the input and output
    /// parameters do. And also define which value ranges these operate in.
    fn documentation(&self) -> &str {
        "undocumented"
    }

    /// Returns the name of each input port of this node.
    /// Choose descriptive but short names.
    /// These names will be used by compiler frontends to identify the ports,
    /// and it will make it easier to stay compatible if indices change.
    fn input_names(&self, _index: usize) -> Option<&str> {
        None
    }

    /// Returns the name of each output port of this node.
    /// Choose descriptive but short names.
    /// These names will be used by compiler frontends to identify the ports,
    /// and it will make it easier to stay compatible if indices change.
    fn output_names(&self, _index: usize) -> Option<&str> {
        None
    }

    /// Returns the index of the output by it's name.
    fn input_index_by_name(&self, name: &str) -> Option<usize> {
        let mut i = 0;

        while let Some(iname) = self.input_names(i) {
            if iname == name {
                return Some(i);
            }
            i += 1;
        }

        None
    }

    /// Returns the index of the output by it's name.
    fn output_index_by_name(&self, name: &str) -> Option<usize> {
        let mut i = 0;

        while let Some(oname) = self.output_names(i) {
            if oname == name {
                return Some(i);
            }
            i += 1;
        }

        None
    }

    /// Number of input ports
    fn input_count(&self) -> usize {
        let mut i = 0;
        while self.input_names(i).is_some() {
            i += 1;
        }
        i
    }

    /// Number of output ports
    fn output_count(&self) -> usize {
        let mut i = 0;
        while self.output_names(i).is_some() {
            i += 1;
        }
        i
    }

    /// Returns true if this node type requires state.
    fn is_stateful(&self) -> bool {
        let mut i = 0;
        while let Some(sig) = self.signature(i) {
            if let DSPNodeSigBit::NodeStatePtr = sig {
                return true;
            }

            i += 1;
        }

        false
    }

    /// The function pointer that should be inserted.
    fn function_ptr(&self) -> *const u8;

    /// Should return the signature type for input parameter `i`.
    fn signature(&self, _i: usize) -> Option<DSPNodeSigBit> {
        None
    }

    /// Should return true if the function for [DSPNodeType::function_ptr]
    /// returns something.
    fn has_return_value(&self) -> bool;

    /// Will be called when the node state should be resetted.
    /// This should be used to store the sample rate for instance or
    /// do other sample rate dependent recomputations.
    /// Also things delay lines should zero their buffers.
    fn reset_state(&self, _dsp_state: *mut DSPState, _state_ptr: *mut u8) {}

    /// Allocates a new piece of state for this [DSPNodeType].
    /// Must be deallocated using [DSPNodeType::deallocate_state].
    fn allocate_state(&self) -> Option<*mut u8> {
        None
    }

    /// Deallocates the private state of this [DSPNodeType].
    fn deallocate_state(&self, _ptr: *mut u8) {}
}

/// A handle to manage the state of a DSP node
/// that was created while the [crate::jit::DSPFunctionTranslator] compiled the given AST
/// to machine code. The AST needs to take care to refer to the same piece
/// of state with the same type across different compilations of the AST with the
/// same [DSPNodeContext].
///
/// It holds a pointer to the state of a single DSP node. The internal state
/// pointer will be shared with the execution thread that will execute the
/// complete DSP function/graph.
///
/// You will not have to allocate and manage this manually, see also [DSPFunction].
pub(crate) struct DSPNodeState {
    /// The node_state_uid that identifies this piece of state uniquely across multiple
    /// ASTs.
    uid: u64,
    /// Holds the type of this piece of state.
    node_type: Arc<dyn DSPNodeType>,
    /// A pointer to the allocated piece of state. It will be shared
    /// with the execution thread. So you must not touch the data that is referenced
    /// here.
    ptr: *mut u8,
    /// A generation counter that is used by [DSPNodeContext] to determine
    /// if a piece of state is not used anymore.
    generation: u64,
    /// The current index into the most recent [DSPFunction] that was
    /// constructed by [DSPNodeContext].
    function_index: usize,
    /// A flag that stores if this DSPNodeState instance was already initialized.
    /// It is set by [DSPNodeContext] if a finished [DSPFunction] was successfully compiled.
    initialized: bool,
}

impl DSPNodeState {
    /// Creates a fresh piece of DSP node state.
    pub(crate) fn new(uid: u64, node_type: Arc<dyn DSPNodeType>) -> Self {
        Self {
            uid,
            node_type: node_type.clone(),
            ptr: node_type.allocate_state().expect("DSPNodeState created for stateful node type"),
            generation: 0,
            function_index: 0,
            initialized: false,
        }
    }

    /// Returns the unique ID of this piece of DSP node state.
    pub(crate) fn uid(&self) -> u64 {
        self.uid
    }

    /// Marks this piece of DSP state as used and deposits the
    /// index into the current [DSPFunction].
    pub(crate) fn mark(&mut self, gen: u64, index: usize) {
        self.generation = gen;
        self.function_index = index;
    }

    /// Checks if the [DSPNodeState] was initialized by the most recently compiled [DSPFunction]
    pub(crate) fn is_initialized(&self) -> bool {
        self.initialized
    }

    /// Sets that the [DSPNodeState] is initialized.
    ///
    /// This happens once the [DSPNodeContext] finished compiling a [DSPFunction].
    /// The user of the [DSPNodeContext] or rather the [crate::JIT] needs to make sure to
    /// actually really call [DSPFunction::init] of course. Otherwise this state tracking
    /// all falls apart. But this happens across different threads, so the synchronizing effort
    /// for this is not worth it (regarding development time) at the moment I think.
    pub(crate) fn set_initialized(&mut self) {
        self.initialized = true;
    }

    /// Returns the state pointer for this DSPNodeState instance.
    /// Primarily used by [DSPFunction::install].
    pub(crate) fn ptr(&self) -> *mut u8 {
        self.ptr
    }

    /// Returns the [DSPNodeType] for this [DSPNodeState].
    pub(crate) fn node_type(&self) -> Arc<dyn DSPNodeType> {
        self.node_type.clone()
    }
}

impl Drop for DSPNodeState {
    /// This should only be dropped when the [DSPNodeContext] determined
    /// that the pointer that was shared with the execution thread is no longer
    /// in use.
    fn drop(&mut self) {
        self.node_type.deallocate_state(self.ptr);
        self.ptr = std::ptr::null_mut();
    }
}