1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
//! Support for the "compact unwinding format" used by Apple platforms,
//! which can be found in __unwind_info sections of binaries.
//!
//! The primary type of interest is [`CompactUnwindInfoIter`], which can be
//! constructed directly from a section of memory.
//!
//! The [`CompactUnwindInfoIter]` lets you iterate through all of the mappings
//! from instruction addresses to unwinding instructions, or lookup a specific
//! mapping by instruction address (unimplemented).
//!
//!
//!
//! # Examples
//!
//! If you want to process all the Compact Unwind Info at once, do something like this:
//!
//! ```
//! use symbolic_debuginfo::macho::{
//!     CompactCfiOp, CompactCfiRegister, CompactUnwindOp,
//!     CompactUnwindInfoIter, MachError, MachObject,
//! };
//!
//! fn read_compact_unwind_info<'d>(mut iter: CompactUnwindInfoIter<'d>)
//!     -> Result<(), MachError>
//! {
//!     // Iterate through the entries
//!     while let Some(entry) = iter.next()? {
//!         match entry.instructions(&iter) {
//!             CompactUnwindOp::None => {
//!                 // No instructions for this region, will need to use
//!                 // stack scanning or frame-pointer techniques to unwind.
//!             }
//!             CompactUnwindOp::UseDwarfFde { offset_in_eh_frame } => {
//!                 // Need to grab the CFI info from the eh_frame section
//!
//!                 // process_eh_frame_fde_at(offset_in_eh_frame)
//!             }
//!             CompactUnwindOp::CfiOps(ops) => {
//!                 // Emit a new entry with the following operations
//!                 let start_addr = entry.instruction_address;
//!                 let length = entry.len;
//!
//!                 for instruction in ops {
//!                     match instruction {
//!                         CompactCfiOp::RegisterAt {
//!                             dest_reg,
//!                             src_reg,
//!                             offset_from_src,
//!                         } => {
//!                             let dest_reg_name = dest_reg.name(&iter);
//!                             let src_reg_name = src_reg.name(&iter);
//!
//!                             // Emit something to the effect of
//!                             // $dest_reg_name = *($src_reg_name + offset_from_src);
//!                         }
//!                         CompactCfiOp::RegisterIs {
//!                             dest_reg,
//!                             src_reg,
//!                             offset_from_src,
//!                         } => {
//!                             let dest_reg_name = dest_reg.name(&iter);
//!                             let src_reg_name = src_reg.name(&iter);
//!
//!                             // Emit something to the effect of
//!                             // $dest_reg_name = $src_reg_name + offset_from_src;
//!                         }
//!                     };
//!                 }
//!             }
//!         }
//!     }
//!     Ok(())
//! }
//! ```
//!
//! If you want to unwind from a specific location, do something like this
//! (API not yet implemented!):
//!
//! ```rust,ignore
//! use symbolic_debuginfo::macho::{
//!     CompactCfiOp, CompactCfiRegister, CompactUnwindOp,
//!     CompactUnwindInfoIter, MachError, MachObject,
//! };
//!
//! fn unwind_one_frame<'d>(mut iter: CompactUnwindInfoIter<'d>, current_address_in_module: u32)
//!     -> Result<(), MachError>
//! {
//!     if let Some(entry) = iter.entry_for_address(current_address_in_module)? {
//!         match entry.instructions(&iter) {
//!             CompactUnwindOp::None => {
//!                 // No instructions for this region, will need to use
//!                 // stack scanning or frame-pointer techniques to unwind.
//!             }
//!             CompactUnwindOp::UseDwarfFde { offset_in_eh_frame } => {
//!                 // Need to grab the CFI info from the eh_frame section
//!
//!                 // process_eh_frame_fde_at(offset_in_eh_frame)
//!             }
//!             CompactUnwindOp::CfiOps(ops) => {
//!                 // Emit a new entry with the following operations
//!                 let start_addr = entry.instruction_address;
//!                 let length = entry.len;
//!
//!                 for instruction in ops {
//!                     match instruction {
//!                         CompactCfiOp::RegisterAt {
//!                             dest_reg,
//!                             src_reg,
//!                             offset_from_src,
//!                         } => {
//!                             let dest_reg_name = dest_reg.name(&iter);
//!                             let src_reg_name = src_reg.name(&iter);
//!
//!                             // Emit something to the effect of
//!                             // $dest_reg_name = *($src_reg_name + offset_from_src);
//!                         }
//!                         CompactCfiOp::RegisterIs {
//!                             dest_reg,
//!                             src_reg,
//!                             offset_from_src,
//!                         } => {
//!                             let dest_reg_name = dest_reg.name(&iter);
//!                             let src_reg_name = src_reg.name(&iter);
//!
//!                             // Emit something to the effect of
//!                             // $dest_reg_name = $src_reg_name + offset_from_src;
//!                         }
//!                     };
//!                 }
//!             }
//!         }
//!     }
//!     Ok(())
//! }
//! ```
//!
//!
//! # Unimplemented Features (TODO)
//!
//! * Personality/LSDA lookup (for runtime unwinders)
//! * Entry lookup by address (for runtime unwinders)
//! * x86/x64 Stackless-Indirect mode decoding (for stack frames > 2KB)
//!
//!
//! # The Compact Unwinding Format
//!
//! This format is defined only by its implementation in llvm. Notably these two
//! files include lots of useful comments and definitions:
//!
//! * [Header describing layout of the format](https://github.com/llvm/llvm-project/blob/main/libunwind/include/mach-o/compact_unwind_encoding.h)
//! * [Implementation that outputs the format](https://github.com/llvm/llvm-project/blob/main/lld/MachO/UnwindInfoSection.cpp)
//! * [Implementation of lldb interpreting that format (CreateUnwindPlan_x86_64 especially useful)](https://github.com/llvm/llvm-project/blob/main/lldb/source/Symbol/CompactUnwindInfo.cpp)
//!
//! This implementation is based on those files at commit `d480f968ad8b56d3ee4a6b6df5532d485b0ad01e`.
//!
//! Unfortunately the description of the format in those files elides some important
//! details, and it uses some naming conventions that are confusing, so this document
//! will attempt to define this format more completely, and with more clear terms.
//!
//! Some notable terminology changes from llvm:
//!
//! * "encoding" or "encoding type" => opcode
//! * "function offset" => instruction address
//!
//! Like all unwinding info formats, the goal of the compact unwinding format
//! is to create a mapping from addresses in the binary to opcodes describing
//! how to unwind from that location.
//!
//! These opcodes describe:
//!
//! * How to recover the return pointer for the current frame
//! * How to recover some of the registers for the current frame
//! * How to run destructors / catch the unwind at runtime (personality/LSDA)
//!
//! A user of the compact unwinding format would:
//!
//! 1. Get the current instruction pointer (e.g. `%rip`).
//! 2. Lookup the corresponding opcode in the compact unwinding structure.
//! 3. Follow the instructions of that opcode to recover the current frame.
//! 4. Optionally perform runtime unwinding tasks for the current frame (destructors).
//! 5. Use that information to recover the instruction pointer of the previous frame.
//! 6. Repeat until unwinding is complete.
//!
//! The compact unwinding format can be understood as two separate pieces:
//!
//! * An architecture-agnostic "page-table" structure for finding opcode entries
//! * Architecture-specific opcode formats (x86, x64, and ARM64)
//!
//! Unlike DWARF CFI, compact unwinding doesn't have facilities for incrementally
//! updating how to recover certain registers as the function progresses.
//!
//! Empirical analysis suggests that there tends to only be one opcode for
//! an entire function (which explains why llvm refers to instruction addresses
//! as "function offsets"), although nothing in the format seems to *require*
//! this to be the case.
//!
//! One consequence of only having one opcode for a whole function is that
//! functions will generally have incorrect instructions for the function's
//! prologue (where callee-saved registers are individually PUSHed onto the
//! stack before the rest of the stack space is allocated), and epilogue
//! (where callee-saved registers are individually POPed back into registers).
//!
//! Presumably this isn't a very big deal, since there's very few situations
//! where unwinding would involve a function still executing its prologue/epilogue.
//! This might matter when handling a stack overflow that occurred while
//! saving the registers, or when processing a non-crashing thread in a minidump
//! that happened to be in its prologue/epilogue.
//!
//! Similarly, the way ranges of instructions are mapped means that Compact
//! Unwinding will generally incorrectly map the padding bytes between functions
//! (attributing them to the previous function), while DWARF CFI tends to
//! more carefully exclude those addresses. Presumably also not a big deal.
//!
//! Both of these things mean that if DWARF CFI and Compact Unwinding are
//! available for a function, the DWARF CFI is expected to be more precise.
//!
//! It's possible that LSDA entries have addresses decoupled from the primary
//! opcode so that instructions on how to run destructors can vary more
//! granularly, but LSDA support is still TODO as it's not needed for
//! backtraces.
//!
//!
//! # Page Tables
//!
//! This section describes the architecture-agnostic layout of the compact
//! unwinding format. The layout of the format is a two-level page-table
//! with one root first-level node pointing to arbitrarily many second-level
//! nodes, which in turn can hold several hundred opcode entries.
//!
//! There are two high-level concepts in this format that enable significant
//! compression of the tables:
//!
//! 1. Eliding duplicate instruction addresses
//! 2. Palettizing the opcodes
//!
//!
//!
//! Trick 1 is standard for unwinders: the table of mappings is sorted by
//! address, and any entries that would have the same opcode as the
//! previous one are elided. So for instance the following:
//!
//! ```text
//! address: 1, opcode: 1
//! address: 2, opcode: 1
//! address: 3, opcode: 2
//! ```
//!
//! Is just encoded like this:
//!
//! ```text
//! address: 1, opcode: 1
//! address: 3, opcode: 2
//! ```
//!
//! We have found a few places with "zero-length" entries, where the same
//! address gets repeated, such as the following in `libsystem_kernel.dylib`:
//!
//! ```text
//! address: 0x000121c3, opcode: 0x00000000
//! address: 0x000121c3, opcode: 0x04000680
//! ```
//!
//! In this case you can just discard the zero-length one (the first one).
//!
//!
//!
//! Trick 2 is more novel: At the first level a global palette of up to 127 opcodes
//! is defined. Each second-level "compressed" (leaf) page can also define up to 128 local
//! opcodes. Then the entries mapping instruction addresses to opcodes can use 8-bit
//! indices into those palettes instead of entire 32-bit opcodes. If an index is
//! smaller than the number of global opcodes, it's global, otherwise it's local
//! (subtract the global count to get the local index).
//!
//! > Unclear detail: If the global palette is smaller than 127, can the local
//!   palette be larger than 128?
//!
//! To compress these entries into a single 32-bit value, the address is truncated
//! to 24 bits and packed with the index. The addresses stored in these entries
//! are also relative to a base address that each second-level page defines.
//! (This will be made more clear below).
//!
//! There are also non-palletized "regular" second-level pages with absolute
//! 32-bit addresses, but those are fairly rare. llvm seems to only want to emit
//! them in the final page.
//!
//! The root page also stores the first address mapped by each second-level
//! page, allowing for more efficient binary search for a particular function
//! offset entry. (This is the base address the compressed pages use.)
//!
//! The root page always has a final sentinel entry which has a null pointer
//! to its second-level page while still specifying a first address. This
//! makes it easy to lookup the maximum mapped address (the sentinel will store
//! that value +1), and just generally makes everything Work Nicer.
//!
//!
//!
//! ## Layout of the Page Table
//!
//! The page table starts at the very beginning of the `__unwind_info` section
//! with the root page:
//!
//! ```rust,ignore
//! struct RootPage {
//!   /// Only version 1 is currently defined
//!   version: u32 = 1,
//!
//!   /// The array of u32 global opcodes (offset relative to start of root page).
//!   ///
//!   /// These may be indexed by "compressed" second-level pages.
//!   global_opcodes_offset: u32,
//!   global_opcodes_len: u32,
//!
//!   /// The array of u32 global personality codes
//!   /// (offset relative to start of root page).
//!   ///
//!   /// Personalities define the style of unwinding that an unwinder should
//!   /// use, and how to interpret the LSDA entries for a function (see below).
//!   personalities_offset: u32,
//!   personalities_len: u32,
//!
//!   /// The array of FirstLevelPageEntry's describing the second-level pages
//!   /// (offset relative to start of root page).
//!   pages_offset: u32,
//!   pages_len: u32,
//!
//!   // After this point there are several dynamically-sized arrays whose
//!   // precise order and positioning don't matter, because they are all
//!   // accessed using offsets like the ones above. The arrays are:
//!
//!   global_opcodes: [u32; global_opcodes_len],
//!   personalities: [u32; personalities_len],
//!   pages: [FirstLevelPageEntry; pages_len],
//!
//!   /// An array of LSDA pointers (Language Specific Data Areas).
//!   ///
//!   /// LSDAs are tables that an unwinder's personality function will use to
//!   /// find what destructors should be run and whether unwinding should
//!   /// be caught and normal execution resumed. We can treat them opaquely.
//!   ///
//!   /// Second-level pages have addresses into this array so that it can
//!   /// can be indexed, the root page doesn't need to know about them.
//!   lsdas: [LsdaEntry; unknown_len],
//! }
//!
//!
//! struct FirstLevelPageEntry {
//!   /// The first address mapped by this page.
//!   ///
//!   /// This is useful for binary-searching for the page that can map
//!   /// a specific address in the binary (the primary kind of lookup
//!   /// performed by an unwinder).
//!   first_address: u32,
//!
//!   /// Offset to the second-level page (offset relative to start of root page).
//!   ///
//!   /// This may point to a RegularSecondLevelPage or a CompressedSecondLevelPage.
//!   /// Which it is can be determined by the 32-bit "kind" value that is at
//!   /// the start of both layouts.
//!   second_level_page_offset: u32,
//!
//!   /// Base offset into the lsdas array that entries in this page will be
//!   /// relative to (offset relative to start of root page).
//!   lsda_index_offset: u32,
//! }
//!
//!
//! struct RegularSecondLevelPage {
//!   /// Always 2 (use to distinguish from CompressedSecondLevelPage).
//!   kind: u32 = 2,
//!
//!   /// The Array of RegularEntry's (offset relative to **start of this page**).
//!   entries_offset: u16,
//!   entries_len: u16,
//! }
//!
//!
//! struct RegularEntry {
//!   /// The address in the binary for this entry (absolute).
//!   instruction_address: u32,
//!   /// The opcode for this address.
//!   opcode: u32,
//! }
//!
//!
//! struct CompressedSecondLevelPage {
//!   /// Always 3 (use to distinguish from RegularSecondLevelPage).
//!   kind: u32 = 3,
//!
//!   /// The array of compressed u32 entries
//!   /// (offset relative to **start of this page**).
//!   ///
//!   /// Entries are a u32 that contains two packed values (from high to low):
//!   /// * 8 bits: opcode index
//!   ///   * 0..global_opcodes_len => index into global palette
//!   ///   * global_opcodes_len..255 => index into local palette
//!   ///     (subtract global_opcodes_len to get the real local index)
//!   /// * 24 bits: instruction address
//!   ///   * address is relative to this page's first_address!
//!   entries_offset: u16,
//!   entries_len: u16,
//!
//!   /// The array of u32 local opcodes for this page
//!   /// (offset relative to **start of this page**).
//!   local_opcodes_offset: u16,
//!   local_opcodes_len: u16,
//! }
//!
//!
//! // TODO: why do these have instruction_addresses? Are they not in sync
//! // with the second-level entries?
//! struct LsdaEntry {
//!   instruction_address: u32,
//!   lsda_address: u32,
//! }
//! ```
//!
//!
//!
//! # Opcode Format
//!
//! There are 3 architecture-specific opcode formats: x86, x64, and ARM64.
//!
//! All 3 formats have a "null opcode" (`0x0000_0000`) which indicates that
//! there is no unwinding information for this range of addresses. This happens
//! with things like hand-written assembly subroutines. This implementation
//! will yield it as a valid opcode that converts into [`CompactUnwindOp::None`].
//!
//! All 3 formats share a common header in the top 8 bits (from high to low):
//!
//! ```rust,ignore
//! /// Whether this instruction is the start of a function.
//! is_start: u1,
//!
//! /// Whether there is an lsda entry for this instruction.
//! has_lsda: u1,
//!
//! /// An index into the global personalities array
//! /// (TODO: ignore if has_lsda == false?)
//! personality_index: u2,
//!
//! /// The architecture-specific kind of opcode this is, specifying how to
//! /// interpret the remaining 24 bits of the opcode.
//! opcode_kind: u4,
//! ```
//!
//!
//!
//! ## x86 and x64 Opcodes
//!
//! x86 and x64 use the same opcode layout, differing only in the registers
//! being restored. Registers are numbered 0-6, with the following mappings:
//!
//! x86:
//! * 0 => no register (like `Option::None`)
//! * 1 => `ebx`
//! * 2 => `ecx`
//! * 3 => `edx`
//! * 4 => `edi`
//! * 5 => `esi`
//! * 6 => `ebp`
//!
//! x64:
//! * 0 => no register (like `Option::None`)
//! * 1 => `rbx`
//! * 2 => `r12`
//! * 3 => `r13`
//! * 4 => `r14`
//! * 5 => `r15`
//! * 6 => `rbp`
//!
//! Note also that encoded sizes/offsets are generally divided by the pointer size
//! (since all values we are interested in are pointer-aligned), which of course differs
//! between x86 and x64.
//!
//! There are 4 kinds of x86/x64 opcodes (specified by opcode_kind):
//!
//! (One of the llvm headers refers to a 5th "0=old" opcode. Apparently this
//! was used for initial development of the format, and is basically just
//! reserved to prevent the testing data from ever getting mixed with real
//! data. Nothing should produce or handle it. It does incidentally match
//! the "null opcode", but it's fine to regard that as an unknown opcode
//! and do nothing.)
//!
//!
//! ### x86/x64 Opcode 1: Frame-Based
//!
//! The function has the standard frame pointer (`bp`) prelude which:
//!
//! * Pushes the caller's `bp` to the stack
//! * Sets `bp := sp` (new frame pointer is the current top of the stack)
//!
//! `bp` has been preserved, and any callee-saved registers that need to be restored
//! are saved on the stack at a known offset from `bp`. The return address is
//! stored just before the caller's `bp`. The caller's stack pointer should
//! point before where the return address is saved.
//!
//! So to unwind you just need to do:
//!
//! ```text
//! %sp := %bp + 2*POINTER_SIZE
//! %ip := *(%bp + POINTER_SIZE)
//! %bp := *(%bp)
//!
//! (and restore all the other callee-saved registers as described below)
//! ```
//!
//! Registers are stored in increasing order (so `reg1` comes before `reg2`).
//! If a register has the "no register" value, continue iterating the offset
//! forward. This lets the registers be stored slightly-non-contiguously on the
//! stack.
//!
//! The remaining 24 bits of the opcode are interpreted as follows (from high to low):
//!
//! ```rust,ignore
//! /// The offset from bp that the registers to restore are saved at,
//! /// divided by pointer size.
//! stack_offset: u8,
//!
//! _unused: u1,
//!
//! /// Registers to restore (see register mapping in previous section)
//! reg1: u3,
//! reg2: u3,
//! reg3: u3,
//! reg4: u3,
//! reg5: u3,
//! ```
//!
//!
//!
//! ### x86/x64 Opcode 2: Frameless (Stack-Immediate)
//!
//!
//! The callee's stack frame has a known size, so we can find the start
//! of the frame by offsetting from sp (the stack pointer). The return
//! address is saved immediately after that location. Any callee-saved
//! registers that need to be restored are saved immediately after that.
//!
//! So to unwind you just need to do:
//!
//! ```text
//! %sp := %sp + stack_size * POINTER_SIZE
//! %ip := *(%sp - 8)
//!
//! (and restore all the other callee-saved registers as described below)
//! ```
//!
//! Registers are stored in *reverse* order on the stack from the order the
//! decoding algorithm outputs (so `reg[1]` comes before `reg[0]`).
//!
//! If a register has the "no register" value, *do not* continue iterating the
//! offset forward -- registers are strictly contiguous (it's possible
//! "no register" can only be trailing due to the encoding, but I haven't
//! verified this).
//!
//! The remaining 24 bits of the opcode are interpreted as follows (from high to low):
//!
//! ```rust,ignore
//! /// How big the stack frame is, divided by pointer size.
//! stack_size: u8,
//!
//! _unused: u3,
//!
//! /// The number of registers that are saved on the stack.
//! register_count: u3,
//!
//! /// The permutation encoding of the registers that are saved
//! /// on the stack (see below).
//! register_permutations: u10,
//! ```
//!
//! The register permutation encoding is a Lehmer code sequence encoded into a
//! single variable-base number so we can encode the ordering of up to
//! six registers in a 10-bit space.
//!
//! This can't really be described well with anything but code, so
//! just read this implementation or llvm's implementation for how to
//! encode/decode this.
//!
//!
//!
//! ### x86/x64 Opcode 3: Frameless (Stack-Indirect)
//!
//! (Currently Unimplemented)
//!
//! Stack-Indirect is exactly the same situation as Stack-Immediate, but
//! the stack-frame size is too large for Stack-Immediate to encode. However,
//! the function prereserved the size of the frame in its prologue, so we can
//! extract the the size of the frame from a `sub` instruction at a known
//! offset from the start of the function (`subl $nnnnnnnn,ESP` in x86,
//! `subq $nnnnnnnn,RSP` in x64).
//!
//! This requires being able to find the first instruction of the function
//! (TODO: presumably the first is_start entry <= this one?).
//!
//! TODO: describe how to extract the value from the `sub` instruction.
//!
//!
//! ```rust,ignore
//! /// Offset from the start of the function where the `sub` instruction
//! /// we need is stored. (NOTE: not divided by anything!)
//! instruction_offset: u8,
//!
//! /// An offset to add to the loaded stack size, divided by pointer size.
//! /// This allows the stack size to differ slightly from the `sub`, to
//! /// compensate for any function prologue that pushes a bunch of
//! /// pointer-sized registers.
//! stack_adjust: u3,
//!
//! /// The number of registers that are saved on the stack.
//! register_count: u3,
//!
//! /// The permutation encoding of the registers that are saved on the stack
//! /// (see Stack-Immediate for a description of this format).
//! register_permutations: u10,
//! ```
//!
//! **Note**: apparently binaries generated by the clang in Xcode 6 generated
//! corrupted versions of this opcode, but this was fixed in Xcode 7
//! (released in September 2015), so *presumably* this isn't something we're
//! likely to encounter. But if you encounter messed up opcodes this might be why.
//!
//!
//!
//! ### x86/x64 Opcode 4: Dwarf
//!
//! There is no compact unwind info here, and you should instead use the
//! DWARF CFI in `.eh_frame` for this line. The remaining 24 bits of the opcode
//! are an offset into the `.eh_frame` section that should hold the DWARF FDE
//! for this instruction address.
//!
//!
//!
//! ## ARM64 Opcodes
//!
//! ARM64 (AKA AArch64) is a lot more strict about the ABI of functions, and
//! as such it has fairly simple opcodes. There are 3 kinds of ARM64 opcode:
//!
//! (Yes there's no Opcode 1, I don't know why.)
//!
//!
//! ### ARM64 Opcode 2: Frameless
//!
//! This is a "frameless" leaf function. The caller is responsible for
//! saving/restoring all of its general purpose registers. The frame pointer
//! is still the caller's frame pointer and doesn't need to be touched. The
//! return address is stored in the link register (`x30`).
//!
//! So to unwind you just need to do:
//!
//! ```text
//! %sp := %sp + stack_size * 16
//! %pc := %x30
//!
//! (no other registers to restore)
//! ```
//!
//! The remaining 24 bits of the opcode are interpreted as follows (from high to low):
//!
//! ```rust,ignore
//! /// How big the stack frame is, divided by 16.
//! stack_size: u12,
//!
//! _unused: u12,
//! ```
//!
//!
//!
//! ### ARM64 Opcode 3: Dwarf
//!
//! There is no compact unwind info here, and you should instead use the
//! DWARF CFI in `.eh_frame` for this line. The remaining 24 bits of the opcode
//! are an offset into the `.eh_frame` section that should hold the DWARF FDE
//! for this instruction address.
//!
//!
//!
//! ### ARM64 Opcode 4: Frame-Based
//!
//! This is a function with the standard prologue. The return address (`pc`) and the
//! frame pointer (`x29`) were pushed onto the stack in a pair and in that order
//! (ARM64 registers are saved/restored in pairs), and then the frame pointer was updated
//! to the current stack pointer.
//!
//! So to unwind you just need to do:
//!
//! ```text
//! %sp := %x29 + 16
//! %pc := *(%x29 + 8)
//! %x29 := *(%x29)
//!
//! (and restore all the other callee-saved registers as described below)
//! ```
//!
//! Any callee-saved registers that need to be restored were then pushed
//! onto the stack in pairs in the following order (if they were pushed at
//! all, see below):
//!
//! 1. `x19`, `x20`
//! 2. `x21`, `x22`
//! 3. `x23`, `x24`
//! 4. `x25`, `x26`
//! 5. `x27`, `x28`
//! 6. `d8`, `d9`
//! 7. `d10`, `d11`
//! 8. `d12`, `d13`
//! 9. `d14`, `d15`
//!
//! The remaining 24 bits of the opcode are interpreted as follows (from high to low):
//!
//! ```rust,ignore
//! _unused: u15,
//!
//! // Whether each register pair was pushed
//! d14_and_d15_saved: u1,
//! d12_and_d13_saved: u1,
//! d10_and_d11_saved: u1,
//! d8_and_d9_saved: u1,
//!
//! x27_and_x28_saved: u1,
//! x25_and_x26_saved: u1,
//! x23_and_x24_saved: u1,
//! x21_and_x22_saved: u1,
//! x19_and_x20_saved: u1,
//! ```
//!
//!
//!
//! # Notable Corners
//!
//! Here's some notable corner cases and esoterica of the format. Behaviour in
//! these situations is not strictly guaranteed (as in we may decide to
//! make the implemenation more strict or liberal if it is deemed necessary
//! or desirable). But current behaviour *is* documented here for the sake of
//! maintenance/debugging. Hopefully it also helps highlight all the ways things
//! can go wrong for anyone using this documentation to write their own tooling.
//!
//! For all these cases, if an Error is reported during iteration/search, the
//! [`CompactUnwindInfoIter`] will be in an unspecified state for future queries.
//! It will never violate memory safety but it may start yielding chaotic
//! values.
//!
//! If this implementation ever panics, that should be regarded as an
//! implementation bug.
//!
//!
//! Things we allow:
//!
//! * The personalities array has a 32-bit length, but all indices into
//!   it are only 2 bits. As such, it is theoretically possible for there
//!   to be unindexable personalities. In practice that Shouldn't Happen,
//!   and this implementation won't report an error if it does, because it
//!   can be benign (although we have no way to tell if indices were truncated).
//!
//! * The llvm headers say that at most there should be 127 global opcodes
//!   and 128 local opcodes, but since local index translation is based on
//!   the actual number of global opcodes and *not* 127/128, there's no
//!   reason why each palette should be individually limited like this.
//!   This implementation doesn't report an error if this happens, and should
//!   work fine if it does.
//!
//! * The llvm headers say that second-level pages are *actual* pages at
//!   a fixed size of 4096 bytes. It's unclear what advantage this provides,
//!   perhaps there's a situation where you're mapping in the pages on demand?
//!   This puts a practical limit on the number of entries each second-level
//!   page can hold -- regular pages can fit 511 entries, while compressed
//!   pages can hold 1021 entries+local_opcodes (they have to share). This
//!   implementation does not report an error if a second-level page has more
//!   values than that, and should work fine if it does.
//!
//! * If a [`CompactUnwindInfoIter`] is created for an architecture it wasn't
//!   designed for, it is assumed that the layout of the page tables will
//!   remain the same, and entry iteration/lookup should still work and
//!   produce results. However [`CompactUnwindInfoEntry::instructions`]
//!   will always return [`CompactUnwindOp::None`].
//!
//! * If an opcode kind is encountered that this implementation wasn't
//!   designed for, `Opcode::instructions` will return [`CompactUnwindOp::None`].
//!
//! * If two entries have the same address (making the first have zero-length),
//!   we silently discard the first one in favour of the second.
//!
//! * Only 7 register mappings are provided for x86/x64 opcodes, but the
//!   3-bit encoding allows for 8. This implementation will just map the
//!   8th encoding to "no register" as well.
//!
//! * Only 6 registers can be restored by the x86/x64 stackless modes, but
//!   the 3-bit encoding of the register count allows for 7. This implementation
//!   clamps the value to 6.
//!
//!
//! Things we produce errors for:
//!
//! * If the root page has a version this implementation wasn't designed for,
//!   [`CompactUnwindInfoIter::new`] will return an Error.
//!
//! * A corrupt unwind_info section may have its entries out of order. Since
//!   the next entry's instruction_address is always needed to compute the
//!   number of bytes the current entry covers, the implementation will report
//!   an error if it encounters this. However it does not attempt to fully
//!   validate the ordering during an `entry_for_address` query, as this would
//!   significantly slow down the binary search. In this situation
//!   you may get chaotic results (same guarantees as `BTreeMap` with an
//!   inconsistent `Ord` implementation).
//!
//! * A corrupt unwind_info section may attempt to index out of bounds either
//!   with out-of-bounds offset values (e.g. personalities_offset) or with out
//!   of bounds indices (e.g. a local opcode index). When an array length is
//!   provided, this implementation will return an error if an index is out
//!   out of bounds. Offsets are only restricted to the unwind_info
//!   section itself, as this implementation does not assume arrays are
//!   placed in any particular place, and does not try to prevent aliasing.
//!   Trying to access outside the `.unwind_info` section will return an error.
//!
//! * If an unknown second-level page type is encountered, iteration/lookup will
//!   return an error.
//!
//!
//! Things that cause chaos:
//!
//! * If the null page was missing, there would be no way to identify the
//!   number of instruction bytes the last entry in the table covers. As such,
//!   this implementation assumes that it exists, and currently does not validate
//!   it ahead of time. If the null page *is* missing, the last entry or page
//!   may be treated as the null page, and won't be emitted. (Perhaps we should
//!   provide more reliable behaviour here?)
//!
//! * If there are multiple null pages, or if there is a page with a defined
//!   second-level page but no entries of its own, behaviour is unspecified.
//!

use crate::macho::MachError;
use goblin::error::Error;
use goblin::mach::segment::SectionData;
use scroll::{Endian, Pread};
use std::mem;

// Hacky glue types to keep exposure of the containing library minimal.
// This will help with transplanting this code into goblin.
type Result<T> = std::result::Result<T, MachError>;

#[derive(Debug, Clone)]
enum Arch {
    X86,
    X64,
    Arm64,
    Other,
}

// Types marked with repr(C) indicate their layout precisely matches the
// layout of the format. In theory we could point directly into the binary
// of the unwind_info section with these types, but we avoid doing so for
// endianness/safety.

#[repr(C)]
#[derive(Debug, Clone, Pread)]
struct FirstLevelPage {
    // Only version 1 is currently defined
    // version: u32 = 1,
    /// The array of u32 global opcodes (offset relative to start of root page).
    ///
    /// These may be indexed by "compressed" second-level pages.
    global_opcodes_offset: u32,
    global_opcodes_len: u32,

    /// The array of u32 global personality codes (offset relative to start of root page).
    ///
    /// Personalities define the style of unwinding that an unwinder should use,
    /// and how to interpret the LSDA entries for a function (see below).
    personalities_offset: u32,
    personalities_len: u32,

    /// The array of [`FirstLevelPageEntry`]'s describing the second-level pages
    /// (offset relative to start of root page).
    pages_offset: u32,
    pages_len: u32,
    // After this point there are several dynamically-sized arrays whose precise
    // order and positioning don't matter, because they are all accessed using
    // offsets like the ones above. The arrays are:

    // global_opcodes: [u32; global_opcodes_len],
    // personalities: [u32; personalities_len],
    // pages: [FirstLevelPageEntry; pages_len],
    // lsdas: [LsdaEntry; unknown_len],
}

#[repr(C)]
#[derive(Debug, Clone, Pread)]
struct FirstLevelPageEntry {
    /// The first address mapped by this page.
    ///
    /// This is useful for binary-searching for the page that can map
    /// a specific address in the binary (the primary kind of lookup
    /// performed by an unwinder).
    first_address: u32,

    /// Offset to the second-level page (offset relative to start of root page).
    ///
    /// This may point to either a [`RegularSecondLevelPage`] or a [`CompressedSecondLevelPage`].
    /// Which it is can be determined by the 32-bit "kind" value that is at
    /// the start of both layouts.
    second_level_page_offset: u32,

    /// Base offset into the lsdas array that entries in this page will be relative
    /// to (offset relative to start of root page).
    lsda_index_offset: u32,
}

#[repr(C)]
#[derive(Debug, Clone, Pread)]
struct RegularSecondLevelPage {
    // Always 2 (use to distinguish from CompressedSecondLevelPage).
    // kind: u32 = 2,
    /// The Array of [`RegularEntry`]'s (offset relative to **start of this page**).
    entries_offset: u16,
    entries_len: u16,
}

#[repr(C)]
#[derive(Debug, Clone, Pread)]
struct CompressedSecondLevelPage {
    // Always 3 (use to distinguish from RegularSecondLevelPage).
    // kind: u32 = 3,
    /// The array of compressed u32 entries (offset relative to **start of this page**).
    ///
    /// Entries are a u32 that contains two packed values (from highest to lowest bits):
    /// * 8 bits: opcode index
    ///   * 0..global_opcodes_len => index into global palette
    ///   * global_opcodes_len..255 => index into local palette (subtract global_opcodes_len)
    /// * 24 bits: instruction address
    ///   * address is relative to this page's first_address!
    entries_offset: u16,
    entries_len: u16,

    /// The array of u32 local opcodes for this page (offset relative to **start of this page**).
    local_opcodes_offset: u16,
    local_opcodes_len: u16,
}

#[repr(C)]
#[derive(Debug, Clone, Pread)]
struct RegularEntry {
    /// The address in the binary for this entry (absolute).
    instruction_address: u32,
    /// The opcode for this address.
    opcode: u32,
}

#[derive(Debug, Clone)]
#[repr(C)]
struct LsdaEntry {
    instruction_address: u32,
    lsda_address: u32,
}

#[derive(Debug, Clone)]
enum OpcodeOrIndex {
    Opcode(u32),
    Index(u32),
}

#[derive(Debug, Clone)]
struct RawCompactUnwindInfoEntry {
    /// The address of the first instruction this entry applies to
    /// (may apply to later instructions as well).
    instruction_address: u32,
    /// Either an opcode or the index into an opcode palette
    opcode_or_index: OpcodeOrIndex,
}

/// An iterator over the [`CompactUnwindInfoEntry`]'s of a `.unwind_info` section.
#[derive(Debug, Clone)]
pub struct CompactUnwindInfoIter<'a> {
    /// Parent .unwind_info metadata.
    arch: Arch,
    endian: Endian,
    section: SectionData<'a>,
    /// Parsed root page.
    root: FirstLevelPage,

    // Iterator state
    /// Current index in the root node.
    first_idx: u32,
    /// Current index in the second-level node.
    second_idx: u32,
    /// Parsed version of the current pages.
    page_of_next_entry: Option<(FirstLevelPageEntry, SecondLevelPage)>,
    /// Minimally parsed version of the next entry, which we need to have
    /// already loaded to know how many instructions the previous entry covered.
    next_entry: Option<RawCompactUnwindInfoEntry>,
    done_page: bool,
}

impl<'a> CompactUnwindInfoIter<'a> {
    /// Creates a new [`CompactUnwindInfoIter`] for the given section.
    pub fn new(
        section: SectionData<'a>,
        little_endian: bool,
        arch: symbolic_common::Arch,
    ) -> Result<Self> {
        const UNWIND_SECTION_VERSION: u32 = 1;

        use symbolic_common::CpuFamily;
        let arch = match arch.cpu_family() {
            CpuFamily::Intel32 => Arch::X86,
            CpuFamily::Amd64 => Arch::X64,
            CpuFamily::Arm64 => Arch::Arm64,
            _ => Arch::Other,
        };

        let endian = if little_endian {
            Endian::Little
        } else {
            Endian::Big
        };

        let offset = &mut 0;

        // Grab all the fields from the header
        let version: u32 = section.gread_with(offset, endian)?;
        if version != UNWIND_SECTION_VERSION {
            return Err(MachError::from(Error::Malformed(format!(
                "Unknown Compact Unwinding Info version {}",
                version
            ))));
        }

        let root = section.gread_with(offset, endian)?;

        let iter = CompactUnwindInfoIter {
            arch,
            endian,
            section,
            root,

            first_idx: 0,
            second_idx: 0,
            page_of_next_entry: None,
            next_entry: None,
            done_page: true,
        };

        Ok(iter)
    }
    /// Gets the next entry in the iterator.
    #[allow(clippy::should_implement_trait)]
    pub fn next(&mut self) -> Result<Option<CompactUnwindInfoEntry>> {
        // Iteration is slightly more complex here because we want to be able to
        // report how many instructions an entry covers, and knowing this requires us
        // to parse the *next* entry's instruction_address value. Also, there's
        // a sentinel page at the end of the listing with a null second_level_page_offset
        // which requires some special handling.
        //
        // To handle this, we split iteration into two phases:
        //
        // * next_raw minimally parses the next entry so we can extract the opcode,
        //   while also ensuring page_of_next_entry is set to match it.
        //
        // * next uses next_raw to "peek" the instruction_address of the next entry,
        //   and then saves the result as `next_entry`, to avoid doing a bunch of
        //   repeated work.

        // If this is our first iteration next_entry will be empty, try to get it.
        if self.next_entry.is_none() {
            self.next_entry = self.next_raw()?;
        }

        if let Some(cur_entry) = self.next_entry.take() {
            // Copy the first and second page data, as it may get overwritten
            // by next_raw, then peek the next entry.
            let (first_page, second_page) = self.page_of_next_entry.clone().unwrap();
            self.next_entry = self.next_raw()?;
            if let Some(next_entry) = self.next_entry.as_ref() {
                let result = self.complete_entry(
                    &cur_entry,
                    next_entry.instruction_address,
                    &first_page,
                    &second_page,
                )?;
                Ok(Some(result))
            } else {
                // If there's no next_entry, then cur_entry is the sentinel, which
                // we shouldn't yield.
                Ok(None)
            }
        } else {
            // next_raw still yielded nothing, we're done.
            Ok(None)
        }
    }

    // Yields a minimally parsed version of the next entry, and sets
    // page_of_next_entry to the page matching it (so it can be further
    // parsed when needed.
    fn next_raw(&mut self) -> Result<Option<RawCompactUnwindInfoEntry>> {
        // First, load up the page for this value if needed
        if self.done_page {
            // Only advance the indices if we've already loaded up a page
            // (so it's not the first iteration) and we have pages left.
            if self.page_of_next_entry.is_some() && self.first_idx != self.root.pages_len {
                self.first_idx += 1;
                self.second_idx = 0;
            }
            if let Some(entry) = self.first_level_entry(self.first_idx)? {
                if entry.second_level_page_offset == 0 {
                    // sentinel page at the end of the list, create a dummy entry
                    // and advance past this page (don't reset done_page).
                    return Ok(Some(RawCompactUnwindInfoEntry {
                        instruction_address: entry.first_address,
                        opcode_or_index: OpcodeOrIndex::Opcode(0),
                    }));
                }
                let second_level_page = self.second_level_page(entry.second_level_page_offset)?;
                self.page_of_next_entry = Some((entry, second_level_page));
                self.done_page = false;
            } else {
                // Couldn't load a page, so we're at the end of our iteration.
                return Ok(None);
            }
        }

        // If we get here, we must have loaded a page
        let (first_level_entry, second_level_page) = self.page_of_next_entry.as_ref().unwrap();
        let entry =
            self.second_level_entry(first_level_entry, second_level_page, self.second_idx)?;

        // Advance to the next entry
        self.second_idx += 1;

        // If we reach the end of the page, setup for the next page
        if self.second_idx == second_level_page.len() {
            self.done_page = true;
        }

        Ok(Some(entry))
    }

    /*
    /// Gets the entry associated with a particular address.
    pub fn entry_for_address(&mut self, _address: u32) -> Result<Option<CompactUnwindInfoEntry>> {
        // TODO: this would be nice for an actual unwinding implementation, but
        // dumping all of the entries doesn't need this.
    }
    */

    fn first_level_entry(&self, idx: u32) -> Result<Option<FirstLevelPageEntry>> {
        if idx < self.root.pages_len {
            let idx_offset = mem::size_of::<FirstLevelPageEntry>() * idx as usize;
            let offset = self.root.pages_offset as usize + idx_offset;

            Ok(Some(self.section.pread_with(offset, self.endian)?))
        } else {
            Ok(None)
        }
    }

    fn second_level_page(&self, offset: u32) -> Result<SecondLevelPage> {
        const SECOND_LEVEL_REGULAR: u32 = 2;
        const SECOND_LEVEL_COMPRESSED: u32 = 3;

        let mut offset = offset as usize;

        let kind: u32 = self.section.gread_with(&mut offset, self.endian)?;
        if kind == SECOND_LEVEL_REGULAR {
            Ok(SecondLevelPage::Regular(
                self.section.gread_with(&mut offset, self.endian)?,
            ))
        } else if kind == SECOND_LEVEL_COMPRESSED {
            Ok(SecondLevelPage::Compressed(
                self.section.gread_with(&mut offset, self.endian)?,
            ))
        } else {
            Err(MachError::from(Error::Malformed(format!(
                "Unknown second-level page kind: {}",
                kind
            ))))
        }
    }

    fn second_level_entry(
        &self,
        first_level_entry: &FirstLevelPageEntry,
        second_level_page: &SecondLevelPage,
        second_level_idx: u32,
    ) -> Result<RawCompactUnwindInfoEntry> {
        match *second_level_page {
            SecondLevelPage::Compressed(ref page) => {
                let offset = first_level_entry.second_level_page_offset as usize
                    + page.entries_offset as usize
                    + second_level_idx as usize * 4;
                let compressed_entry: u32 = self.section.pread_with(offset, self.endian)?;

                let instruction_address =
                    (compressed_entry & 0x00FFFFFF) + first_level_entry.first_address;
                let opcode_idx = (compressed_entry >> 24) & 0xFF;
                Ok(RawCompactUnwindInfoEntry {
                    instruction_address,
                    opcode_or_index: OpcodeOrIndex::Index(opcode_idx),
                })
            }
            SecondLevelPage::Regular(ref page) => {
                let offset = first_level_entry.second_level_page_offset as usize
                    + page.entries_offset as usize
                    + second_level_idx as usize * 8;

                let entry: RegularEntry = self.section.pread_with(offset, self.endian)?;

                Ok(RawCompactUnwindInfoEntry {
                    instruction_address: entry.instruction_address,
                    opcode_or_index: OpcodeOrIndex::Opcode(entry.opcode),
                })
            }
        }
    }

    fn complete_entry(
        &self,
        entry: &RawCompactUnwindInfoEntry,
        next_entry_instruction_address: u32,
        first_level_entry: &FirstLevelPageEntry,
        second_level_page: &SecondLevelPage,
    ) -> Result<CompactUnwindInfoEntry> {
        if entry.instruction_address > next_entry_instruction_address {
            return Err(MachError::from(Error::Malformed(format!(
                "Entry addresses are not monotonic! ({} > {})",
                entry.instruction_address, next_entry_instruction_address
            ))));
        }
        let opcode = match entry.opcode_or_index {
            OpcodeOrIndex::Opcode(opcode) => opcode,
            OpcodeOrIndex::Index(opcode_idx) => {
                if let SecondLevelPage::Compressed(ref page) = second_level_page {
                    if opcode_idx < self.root.global_opcodes_len {
                        self.global_opcode(opcode_idx)?
                    } else {
                        let opcode_idx = opcode_idx - self.root.global_opcodes_len;
                        if opcode_idx >= page.local_opcodes_len as u32 {
                            return Err(MachError::from(Error::Malformed(format!(
                                "Local opcode index too large ({} >= {})",
                                opcode_idx, page.local_opcodes_len
                            ))));
                        }
                        let offset = first_level_entry.second_level_page_offset as usize
                            + page.local_opcodes_offset as usize
                            + opcode_idx as usize * 4;
                        let opcode: u32 = self.section.pread_with(offset, self.endian)?;
                        opcode
                    }
                } else {
                    unreachable!()
                }
            }
        };
        let opcode = Opcode(opcode);

        Ok(CompactUnwindInfoEntry {
            instruction_address: entry.instruction_address,
            len: next_entry_instruction_address - entry.instruction_address,
            opcode,
        })
    }

    fn global_opcode(&self, opcode_idx: u32) -> Result<u32> {
        if opcode_idx >= self.root.global_opcodes_len {
            return Err(MachError::from(Error::Malformed(format!(
                "Global opcode index too large ({} >= {})",
                opcode_idx, self.root.global_opcodes_len
            ))));
        }
        let offset = self.root.global_opcodes_offset as usize + opcode_idx as usize * 4;
        let opcode: u32 = self.section.pread_with(offset, self.endian)?;
        Ok(opcode)
    }

    fn personality(&self, personality_idx: u32) -> Result<u32> {
        if personality_idx >= self.root.personalities_len {
            return Err(MachError::from(Error::Malformed(format!(
                "Personality index too large ({} >= {})",
                personality_idx, self.root.personalities_len
            ))));
        }
        let offset = self.root.personalities_offset as usize + personality_idx as usize * 4;
        let personality: u32 = self.section.pread_with(offset, self.endian)?;
        Ok(personality)
    }

    /// Dumps similar output to `llvm-objdump --unwind-info`, for debugging.
    pub fn dump(&self) -> Result<()> {
        println!("Contents of __unwind_info section:");
        println!("  Version:                                   0x1");
        println!(
            "  Common encodings array section offset:     0x{:x}",
            self.root.global_opcodes_offset
        );
        println!(
            "  Number of common encodings in array:       0x{:x}",
            self.root.global_opcodes_len
        );
        println!(
            "  Personality function array section offset: 0x{:x}",
            self.root.personalities_offset
        );
        println!(
            "  Number of personality functions in array:  0x{:x}",
            self.root.personalities_len
        );
        println!(
            "  Index array section offset:                0x{:x}",
            self.root.pages_offset
        );
        println!(
            "  Number of indices in array:                0x{:x}",
            self.root.pages_len
        );

        println!(
            "  Common encodings: (count = {})",
            self.root.global_opcodes_len
        );
        for i in 0..self.root.global_opcodes_len {
            let opcode = self.global_opcode(i)?;
            println!("    encoding[{}]: 0x{:08x}", i, opcode);
        }

        println!(
            "  Personality functions: (count = {})",
            self.root.personalities_len
        );
        for i in 0..self.root.personalities_len {
            let personality = self.personality(i)?;
            println!("    personality[{}]: 0x{:08x}", i, personality);
        }

        println!("  Top level indices: (count = {})", self.root.pages_len);
        for i in 0..self.root.pages_len {
            let entry = self.first_level_entry(i)?.unwrap();
            println!("    [{}]: function offset=0x{:08x}, 2nd level page offset=0x{:08x}, LSDA offset=0x{:08x}",
                    i,
                    entry.first_address,
                    entry.second_level_page_offset,
                    entry.lsda_index_offset);
        }

        // TODO: print LSDA info
        println!("  LSDA descriptors:");
        println!("  Second level indices:");

        let mut iter = (*self).clone();
        while let Some(raw_entry) = iter.next_raw()? {
            let (first, second) = iter.page_of_next_entry.clone().unwrap();
            // Always observing the index after the step, so subtract 1
            let second_idx = iter.second_idx - 1;

            // If this is the first entry of this page, dump the page
            if second_idx == 0 {
                println!("    Second level index[{}]: offset in section=0x{:08x}, base function=0x{:08x}",
                iter.first_idx,
                first.second_level_page_offset,
                first.first_address);
            }

            // Dump the entry

            // Feed in own instruction_address as a dummy value (we don't need it for this format)
            let entry =
                iter.complete_entry(&raw_entry, raw_entry.instruction_address, &first, &second)?;
            if let OpcodeOrIndex::Index(opcode_idx) = raw_entry.opcode_or_index {
                println!(
                    "      [{}]: function offset=0x{:08x}, encoding[{}]=0x{:08x}",
                    second_idx, entry.instruction_address, opcode_idx, entry.opcode.0
                );
            } else {
                println!(
                    "      [{}]: function offset=0x{:08x}, encoding=0x{:08x}",
                    second_idx, entry.instruction_address, entry.opcode.0
                );
            }
        }

        Ok(())
    }
}

#[derive(Debug, Clone)]
enum SecondLevelPage {
    Compressed(CompressedSecondLevelPage),
    Regular(RegularSecondLevelPage),
}

impl SecondLevelPage {
    fn len(&self) -> u32 {
        match *self {
            SecondLevelPage::Regular(ref page) => page.entries_len as u32,
            SecondLevelPage::Compressed(ref page) => page.entries_len as u32,
        }
    }
}

/// A Compact Unwind Info entry.
#[derive(Debug, Clone)]
pub struct CompactUnwindInfoEntry {
    /// The first instruction this entry covers.
    pub instruction_address: u32,
    /// How many addresses this entry covers.
    pub len: u32,
    /// The opcode for this entry.
    opcode: Opcode,
}

impl CompactUnwindInfoEntry {
    /// Gets cfi instructions associated with this entry.
    pub fn instructions(&self, iter: &CompactUnwindInfoIter) -> CompactUnwindOp {
        self.opcode.instructions(iter)
    }
}

/// A Compact Unwinding Operation
#[derive(Debug)]
pub enum CompactUnwindOp {
    /// The instructions can be described with simple CFI operations.
    CfiOps(CompactCfiOpIter),
    /// Instructions can't be encoded by Compact Unwinding, but an FDE
    /// with real DWARF CFI instructions is stored in the eh_frame section.
    UseDwarfFde {
        /// The offset in the eh_frame section where the FDE is.
        offset_in_eh_frame: u32,
    },
    /// Nothing to do (may be unimplemented features or an unknown encoding)
    None,
}

/// Minimal set of CFI ops needed to express Compact Unwinding semantics:
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum CompactCfiOp {
    /// The value of `dest_reg` is *stored at* `src_reg + offset_from_src`.
    RegisterAt {
        /// Destination
        dest_reg: CompactCfiRegister,
        /// Source
        src_reg: CompactCfiRegister,
        /// Offset
        offset_from_src: i32,
    },
    /// The value of `dest_reg` *is* `src_reg + offset_from_src`.
    RegisterIs {
        /// Destination
        dest_reg: CompactCfiRegister,
        /// Source
        src_reg: CompactCfiRegister,
        /// Offset
        offset_from_src: i32,
    },
}

#[derive(Debug, Clone)]
enum X86UnwindingMode {
    RbpFrame,
    StackImmediate,
    StackIndirect,
    Dwarf,
}

#[derive(Debug, Clone)]
enum Arm64UnwindingMode {
    Frameless,
    Dwarf,
    Frame,
}

#[derive(Debug, Clone)]
struct Opcode(u32);

// Arch-generic stuff
impl Opcode {
    fn instructions(&self, iter: &CompactUnwindInfoIter) -> CompactUnwindOp {
        match iter.arch {
            Arch::X86 | Arch::X64 => self.x86_instructions(iter),
            Arch::Arm64 => self.arm64_instructions(iter),
            _ => CompactUnwindOp::None,
        }
    }

    fn pointer_size(&self, iter: &CompactUnwindInfoIter) -> u32 {
        match iter.arch {
            Arch::X86 => 4,
            Arch::X64 => 8,
            Arch::Arm64 => 8,
            _ => unimplemented!(),
        }
    }

    /*
    // potentially needed for future work:

    fn is_start(&self) -> bool {
        let offset = 32 - 1;
        (self.0 & (1 << offset)) != 0
    }
    fn has_lsda(&self) -> bool{
        let offset = 32 - 2;
        (self.0 & (1 << offset)) != 0
    }
    fn personality_index(&self) -> u32 {
        let offset = 32 - 4;
        (self.0 >> offset) & 0b11
    }
    */
}

// x86/x64 implementation
impl Opcode {
    fn x86_instructions(&self, iter: &CompactUnwindInfoIter) -> CompactUnwindOp {
        let pointer_size = self.pointer_size(iter) as i32;
        match self.x86_mode() {
            Some(X86UnwindingMode::RbpFrame) => {
                // This function has the standard function prelude and rbp
                // has been preserved. Additionally, any callee-saved registers
                // that haven't been preserved (x86_rbp_registers) are saved on
                // the stack at x86_rbp_stack_offset.
                let mut ops = CompactCfiOpIter::new();

                ops.push(CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                });
                ops.push(CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                });
                ops.push(CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                });

                // This implementation here is in line with whatever llvm does here:
                // https://github.com/llvm/llvm-project/blob/d21a35ac0a958fd4cff0b8f424a2706b8785b89d/lldb/source/Symbol/CompactUnwindInfo.cpp#L766-L788

                // These offsets are relative to the frame pointer, but
                // cfi prefers things to be relative to the cfa, so apply
                // the same offset here too.
                let offset = self.x86_rbp_stack_offset() as i32 + 2;
                // Offset advances even if there's no register here
                for (i, reg) in self.x86_rbp_registers().iter().enumerate() {
                    if let Some(reg) = *reg {
                        ops.push(CompactCfiOp::RegisterAt {
                            dest_reg: reg,
                            src_reg: CompactCfiRegister::cfa(),
                            offset_from_src: -(offset - i as i32) * pointer_size,
                        });
                    }
                }
                CompactUnwindOp::CfiOps(ops.into_iter())
            }
            Some(X86UnwindingMode::StackImmediate) => {
                // This function doesn't have the standard rbp-based prelude,
                // but we know how large its stack frame is (x86_frameless_stack_size),
                // and any callee-saved registers that haven't been preserved are
                // saved *immediately* after the location at rip.

                let mut ops = CompactCfiOpIter::new();

                let stack_size = self.x86_frameless_stack_size();
                ops.push(CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size as i32 * pointer_size,
                });
                ops.push(CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                });

                let mut offset = 2;
                // offset only advances if there's a register here.
                // also note registers are in reverse order.
                for reg in self.x86_frameless_registers().iter().rev() {
                    if let Some(reg) = *reg {
                        ops.push(CompactCfiOp::RegisterAt {
                            dest_reg: reg,
                            src_reg: CompactCfiRegister::cfa(),
                            offset_from_src: -offset * pointer_size,
                        });
                        offset += 1;
                    }
                }
                CompactUnwindOp::CfiOps(ops.into_iter())
            }
            Some(X86UnwindingMode::StackIndirect) => {
                // TODO: implement this? Perhaps there is no reasonable implementation
                // since this involves parsing a value out of a machine instruction
                // in the binary? Or can we just do that work here and it just
                // becomes a constant in the CFI output?
                //
                // Either way it's not urgent, since this mode is only needed for
                // stack frames that are bigger than ~2KB.
                CompactUnwindOp::None
            }
            Some(X86UnwindingMode::Dwarf) => {
                // Oops! It was in the eh_frame all along.

                let offset_in_eh_frame = self.x86_dwarf_fde();
                CompactUnwindOp::UseDwarfFde { offset_in_eh_frame }
            }
            None => CompactUnwindOp::None,
        }
    }

    fn x86_mode(&self) -> Option<X86UnwindingMode> {
        const X86_MODE_MASK: u32 = 0x0F00_0000;
        const X86_MODE_RBP_FRAME: u32 = 0x0100_0000;
        const X86_MODE_STACK_IMMD: u32 = 0x0200_0000;
        const X86_MODE_STACK_IND: u32 = 0x0300_0000;
        const X86_MODE_DWARF: u32 = 0x0400_0000;

        let masked = self.0 & X86_MODE_MASK;

        match masked {
            X86_MODE_RBP_FRAME => Some(X86UnwindingMode::RbpFrame),
            X86_MODE_STACK_IMMD => Some(X86UnwindingMode::StackImmediate),
            X86_MODE_STACK_IND => Some(X86UnwindingMode::StackIndirect),
            X86_MODE_DWARF => Some(X86UnwindingMode::Dwarf),
            _ => None,
        }
    }

    fn x86_rbp_registers(&self) -> [Option<CompactCfiRegister>; 5] {
        let mask = 0b111;
        [
            CompactCfiRegister::from_x86_encoded(self.0 & mask),
            CompactCfiRegister::from_x86_encoded((self.0 >> 3) & mask),
            CompactCfiRegister::from_x86_encoded((self.0 >> 6) & mask),
            CompactCfiRegister::from_x86_encoded((self.0 >> 9) & mask),
            CompactCfiRegister::from_x86_encoded((self.0 >> 12) & mask),
        ]
    }

    fn x86_rbp_stack_offset(&self) -> u32 {
        let offset = 32 - 8 - 8;
        (self.0 >> offset) & 0b1111_1111
    }

    fn x86_frameless_stack_size(&self) -> u32 {
        let offset = 32 - 8 - 8;
        (self.0 >> offset) & 0b1111_1111
    }

    fn x86_frameless_register_count(&self) -> u32 {
        let offset = 32 - 8 - 8 - 3 - 3;
        let register_count = (self.0 >> offset) & 0b111;
        if register_count > 6 {
            6
        } else {
            register_count
        }
    }

    fn x86_frameless_registers(&self) -> [Option<CompactCfiRegister>; 6] {
        let mut permutation = self.0 & 0b11_1111_1111;
        let mut permunreg = [0; 6];
        let register_count = self.x86_frameless_register_count();

        // I honestly haven't looked into what the heck this is doing, I
        // just copied this implementation from llvm since it honestly doesn't
        // matter much. Magically unpack 6 values from 10 bits!
        match register_count {
            6 => {
                permunreg[0] = permutation / 120; // 120 == 5!
                permutation -= permunreg[0] * 120;
                permunreg[1] = permutation / 24; // 24 == 4!
                permutation -= permunreg[1] * 24;
                permunreg[2] = permutation / 6; // 6 == 3!
                permutation -= permunreg[2] * 6;
                permunreg[3] = permutation / 2; // 2 == 2!
                permutation -= permunreg[3] * 2;
                permunreg[4] = permutation; // 1 == 1!
                permunreg[5] = 0;
            }
            5 => {
                permunreg[0] = permutation / 120;
                permutation -= permunreg[0] * 120;
                permunreg[1] = permutation / 24;
                permutation -= permunreg[1] * 24;
                permunreg[2] = permutation / 6;
                permutation -= permunreg[2] * 6;
                permunreg[3] = permutation / 2;
                permutation -= permunreg[3] * 2;
                permunreg[4] = permutation;
            }
            4 => {
                permunreg[0] = permutation / 60;
                permutation -= permunreg[0] * 60;
                permunreg[1] = permutation / 12;
                permutation -= permunreg[1] * 12;
                permunreg[2] = permutation / 3;
                permutation -= permunreg[2] * 3;
                permunreg[3] = permutation;
            }
            3 => {
                permunreg[0] = permutation / 20;
                permutation -= permunreg[0] * 20;
                permunreg[1] = permutation / 4;
                permutation -= permunreg[1] * 4;
                permunreg[2] = permutation;
            }
            2 => {
                permunreg[0] = permutation / 5;
                permutation -= permunreg[0] * 5;
                permunreg[1] = permutation;
            }
            1 => {
                permunreg[0] = permutation;
            }
            _ => {
                // Do nothing
            }
        }

        let mut registers = [0u32; 6];
        let mut used = [false; 7];
        for i in 0..register_count {
            let mut renum = 0;
            for j in 1u32..7 {
                if !used[j as usize] {
                    if renum == permunreg[i as usize] {
                        registers[i as usize] = j;
                        used[j as usize] = true;
                        break;
                    }
                    renum += 1;
                }
            }
        }
        [
            CompactCfiRegister::from_x86_encoded(registers[0]),
            CompactCfiRegister::from_x86_encoded(registers[1]),
            CompactCfiRegister::from_x86_encoded(registers[2]),
            CompactCfiRegister::from_x86_encoded(registers[3]),
            CompactCfiRegister::from_x86_encoded(registers[4]),
            CompactCfiRegister::from_x86_encoded(registers[5]),
        ]
    }

    fn x86_dwarf_fde(&self) -> u32 {
        self.0 & 0x00FF_FFFF
    }
    /*
    // potentially needed for future work:

    fn x86_frameless_stack_adjust(&self) -> u32 {
        let offset = 32 - 8 - 8 - 3;
        (self.0 >> offset) & 0b111
    }
    */
}

// ARM64 implementation
impl Opcode {
    fn arm64_mode(&self) -> Option<Arm64UnwindingMode> {
        const ARM64_MODE_MASK: u32 = 0x0F000000;
        const ARM64_MODE_FRAMELESS: u32 = 0x02000000;
        const ARM64_MODE_DWARF: u32 = 0x03000000;
        const ARM64_MODE_FRAME: u32 = 0x04000000;

        let masked = self.0 & ARM64_MODE_MASK;

        match masked {
            ARM64_MODE_FRAMELESS => Some(Arm64UnwindingMode::Frameless),
            ARM64_MODE_DWARF => Some(Arm64UnwindingMode::Dwarf),
            ARM64_MODE_FRAME => Some(Arm64UnwindingMode::Frame),
            _ => None,
        }
    }

    fn arm64_instructions(&self, iter: &CompactUnwindInfoIter) -> CompactUnwindOp {
        let pointer_size = self.pointer_size(iter) as i32;
        match self.arm64_mode() {
            Some(Arm64UnwindingMode::Frameless) => {
                // This is a "frameless" leaf function. All there is to
                // do is pop the stack and move the return address from
                // the link register to the instruction pointer.

                // Stack size is divided by 16.
                let stack_size = self.arm64_frameless_stack_size() * 16;
                let mut ops = CompactCfiOpIter::new();

                ops.push(CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size as i32,
                });
                ops.push(CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::link_register(),
                    offset_from_src: 0,
                });

                CompactUnwindOp::CfiOps(ops.into_iter())
            }
            Some(Arm64UnwindingMode::Dwarf) => {
                let offset_in_eh_frame = self.arm64_dwarf_fde();
                CompactUnwindOp::UseDwarfFde { offset_in_eh_frame }
            }
            Some(Arm64UnwindingMode::Frame) => {
                let mut ops = CompactCfiOpIter::new();

                // This function has the standard ARM64 prologue, where
                // the frame pointer and instruction pointer are immediately
                // pushed as a pair onto the stack, and then the frame
                // pointer is updated to be the current stack pointer.
                ops.push(CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                });
                ops.push(CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                });
                ops.push(CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                });

                // Then the X19-X28 registers that need to be restored
                // are pushed onto the stack in pairs in ascending order.
                // This is followed by the D8-D15 registers that need
                // to be restored.

                // The registers that were pushed are just represented
                // by a simple bit set covering bits 0-9 (**low-to-high**):
                let num_reg_pairs = 9;
                let mut pairs_saved = 0;
                for pair_num in 0..num_reg_pairs {
                    let has_pair = (self.0 & (1 << pair_num)) != 0;
                    if has_pair {
                        // Although ARM64 wants to restore these registers in pairs,
                        // we specify them individually since CFI likes it that way.
                        let first_reg = ARM64_REG_BASE + pair_num * 2;
                        let second_reg = ARM64_REG_BASE + pair_num * 2 + 1;

                        ops.push(CompactCfiOp::RegisterAt {
                            dest_reg: CompactCfiRegister::from_arm64_encoded(first_reg),
                            src_reg: CompactCfiRegister::cfa(),
                            offset_from_src: (-2 * pairs_saved - 3) * pointer_size,
                        });
                        ops.push(CompactCfiOp::RegisterAt {
                            dest_reg: CompactCfiRegister::from_arm64_encoded(second_reg),
                            src_reg: CompactCfiRegister::cfa(),
                            offset_from_src: (-2 * pairs_saved - 4) * pointer_size,
                        });
                        pairs_saved += 1;
                    }
                }

                CompactUnwindOp::CfiOps(ops.into_iter())
            }
            None => CompactUnwindOp::None,
        }
    }

    fn arm64_frameless_stack_size(&self) -> u32 {
        let offset = 32 - 8 - 12;
        (self.0 >> offset) & 0xFFF
    }

    fn arm64_dwarf_fde(&self) -> u32 {
        self.0 & 0x00FF_FFFF
    }
}

// The x86 encoding includes the frame pointer as value 6, while
// the ARM64 encoding doesn't encode it (but needs it for output).
// To avoid the register number of the frame pointer being dependent
// on the target architecture, we start ARM64 register numbers
// *after* 6, so that value can still be used. This is potentially
// needlessly cute, but it makes usage a bit cleaner.
const REG_FRAME: u8 = 6;
const ARM64_REG_BASE: u32 = REG_FRAME as u32 + 1;
// These registers aren't ever encoded explicitly, so we make
// up some arbitrary values for reporting them in our outputs.
const REG_LINK: u8 = 252;
const REG_INSTRUCTION: u8 = 253;
const REG_STACK: u8 = 254;
const REG_CFA: u8 = 255;

/// A register for a [`CompactCfiOp`], as used by Compact Unwinding.
///
/// You should just treat this opaquely and use its methods to make sense of it.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct CompactCfiRegister(u8);

impl CompactCfiRegister {
    fn from_x86_encoded(val: u32) -> Option<Self> {
        if (1..=6).contains(&val) {
            Some(CompactCfiRegister(val as u8))
        } else {
            None
        }
    }

    fn from_arm64_encoded(val: u32) -> Self {
        // Assert shouldn't happen as we're processing trusted input here, but
        // good to validate this in tests.
        debug_assert!((ARM64_REG_BASE..ARM64_REG_BASE + 18).contains(&val));
        CompactCfiRegister(val as u8)
    }

    /// Whether this register is the cfa register.
    pub fn is_cfa(&self) -> bool {
        self.0 == REG_CFA
    }

    /// The name of this register that cfi wants.
    pub fn name(&self, iter: &CompactUnwindInfoIter) -> Option<&'static str> {
        match self.0 {
            REG_CFA => Some("cfa"),
            other => name_of_other_reg(other, iter),
        }
    }

    /// Gets the CFA register (Canonical Frame Address) -- the frame pointer (e.g. rbp)
    pub fn cfa() -> Self {
        Self(REG_CFA)
    }

    /// Gets the register for the frame pointer (e.g. rbp).
    pub fn frame_pointer() -> Self {
        CompactCfiRegister(REG_FRAME)
    }

    /// Gets the register for the instruction pointer (e.g. rip).
    pub fn instruction_pointer() -> Self {
        CompactCfiRegister(REG_INSTRUCTION)
    }

    /// Gets the register for the stack pointer (e.g. rsp).
    pub fn stack_pointer() -> Self {
        CompactCfiRegister(REG_STACK)
    }

    /// Get the ARM64 link register (x30).
    pub fn link_register() -> Self {
        CompactCfiRegister(REG_LINK)
    }
}

fn name_of_other_reg(reg: u8, iter: &CompactUnwindInfoIter) -> Option<&'static str> {
    match iter.arch {
        Arch::X86 => match reg {
            0 => None,
            1 => Some("ebx"),
            2 => Some("ecx"),
            3 => Some("edx"),
            4 => Some("edi"),
            5 => Some("esi"),
            6 => Some("ebp"),

            // Not part of the compact format, but needed to describe opcode behaviours
            REG_INSTRUCTION => Some("eip"),
            REG_STACK => Some("esp"),

            _ => None,
        },
        Arch::X64 => match reg {
            0 => None,
            1 => Some("rbx"),
            2 => Some("r12"),
            3 => Some("r13"),
            4 => Some("r14"),
            5 => Some("r15"),
            6 => Some("rbp"),

            // Not part of the compact format, but needed to describe opcode behaviours
            REG_INSTRUCTION => Some("rip"),
            REG_STACK => Some("rsp"),
            _ => None,
        },
        Arch::Arm64 => {
            match reg {
                7 => Some("x19"),
                8 => Some("x20"),
                9 => Some("x21"),
                10 => Some("x22"),
                11 => Some("x23"),
                12 => Some("x24"),
                13 => Some("x25"),
                14 => Some("x26"),
                15 => Some("x27"),
                16 => Some("x28"),

                17 => Some("d8"),
                18 => Some("d9"),
                19 => Some("d10"),
                20 => Some("d11"),
                21 => Some("d12"),
                22 => Some("d13"),
                23 => Some("d14"),
                24 => Some("d15"),

                // Not part of the compact format, but needed to describe opcode behaviours
                REG_FRAME => Some("x29"),
                REG_LINK => Some("x30"),
                REG_INSTRUCTION => Some("pc"),
                REG_STACK => Some("sp"),
                _ => None,
            }
        }
        _ => None,
    }
}

/// An iterator over the [`CompactCfiOp`]s yielded by [`CompactUnwindOp::CfiOps`].
#[derive(Debug, Clone)]
pub struct CompactCfiOpIter {
    // This is just a hacky impl of an ArrayVec to avoid depending on it, and
    // avoid allocating. This ends up storing 20 u64's if enum optimizations
    // work the way I expect.
    items: [Option<CompactCfiOp>; 21],
    cur_idx: usize,
}

impl CompactCfiOpIter {
    fn new() -> Self {
        Self {
            items: [
                None, None, None, None, None, None, None, None, None, None, None, None, None, None,
                None, None, None, None, None, None, None,
            ],
            cur_idx: 0,
        }
    }

    fn push(&mut self, item: CompactCfiOp) {
        // Will panic if we overflow, but that's fine, the buffer should be
        // sized to fit any payload we need, since that's bounded.
        self.items[self.cur_idx] = Some(item);
        self.cur_idx += 1;
    }

    /// Resets cur_idx for this to be used as an iterator,
    /// because I'm too lazy to make *another* type for this.
    fn into_iter(mut self) -> Self {
        self.cur_idx = 0;
        self
    }
}

impl Iterator for CompactCfiOpIter {
    type Item = CompactCfiOp;
    fn next(&mut self) -> Option<Self::Item> {
        if self.cur_idx < self.items.len() {
            let old_idx = self.cur_idx;
            self.cur_idx += 1;
            self.items[old_idx].take()
        } else {
            None
        }
    }
}

#[cfg(test)]
mod test {

    use super::{
        CompactCfiOp, CompactCfiRegister, CompactUnwindInfoIter, CompactUnwindOp, Opcode,
        ARM64_REG_BASE,
    };
    use crate::macho::MachError;
    use scroll::Pwrite;
    use symbolic_common::Arch;

    // All Second-level pages have this much memory to work with, let's stick to that
    const PAGE_SIZE: usize = 4096;
    const REGULAR_PAGE_HEADER_LEN: usize = 8;
    const COMPRESSED_PAGE_HEADER_LEN: usize = 12;
    const MAX_REGULAR_SECOND_LEVEL_ENTRIES: usize = (PAGE_SIZE - REGULAR_PAGE_HEADER_LEN) / 8;
    const MAX_COMPRESSED_SECOND_LEVEL_ENTRIES: usize = (PAGE_SIZE - COMPRESSED_PAGE_HEADER_LEN) / 4;
    const MAX_COMPRESSED_SECOND_LEVEL_ENTRIES_WITH_MAX_LOCALS: usize =
        (PAGE_SIZE - COMPRESSED_PAGE_HEADER_LEN - MAX_LOCAL_OPCODES_LEN as usize * 4) / 4;

    // Mentioned by headers, but seems to have no real significance
    const MAX_GLOBAL_OPCODES_LEN: u32 = 127;
    const MAX_LOCAL_OPCODES_LEN: u32 = 128;

    // Only 2 bits are allocated to this index
    const MAX_PERSONALITIES_LEN: u32 = 4;

    const X86_MODE_RBP_FRAME: u32 = 0x0100_0000;
    const X86_MODE_STACK_IMMD: u32 = 0x0200_0000;
    const X86_MODE_STACK_IND: u32 = 0x0300_0000;
    const X86_MODE_DWARF: u32 = 0x0400_0000;

    const ARM64_MODE_FRAMELESS: u32 = 0x02000000;
    const ARM64_MODE_DWARF: u32 = 0x03000000;
    const ARM64_MODE_FRAME: u32 = 0x04000000;

    const REGULAR_PAGE_KIND: u32 = 2;
    const COMPRESSED_PAGE_KIND: u32 = 3;

    fn align(offset: u32, align: u32) -> u32 {
        // Adding `align - 1` to a value push unaligned values to the next multiple,
        // and integer division + multiplication can then remove the remainder.
        ((offset + align - 1) / align) * align
    }
    fn pack_x86_rbp_registers(regs: [u8; 5]) -> u32 {
        let mut result: u32 = 0;
        let base_offset = 0;
        for (idx, &reg) in regs.iter().enumerate() {
            assert!(reg <= 6);
            result |= (reg as u32 & 0b111) << (base_offset + idx * 3);
        }

        result
    }
    fn pack_x86_stackless_registers(num_regs: u32, registers: [u8; 6]) -> u32 {
        for &reg in &registers {
            assert!(reg <= 6);
        }

        // Also copied from llvm implementation
        let mut renumregs = [0u32; 6];
        for i in 6 - num_regs..6 {
            let mut countless = 0;
            for j in 6 - num_regs..i {
                if registers[j as usize] < registers[i as usize] {
                    countless += 1;
                }
            }
            renumregs[i as usize] = registers[i as usize] as u32 - countless - 1;
        }
        let mut permutation_encoding: u32 = 0;
        match num_regs {
            6 => {
                permutation_encoding |= 120 * renumregs[0]
                    + 24 * renumregs[1]
                    + 6 * renumregs[2]
                    + 2 * renumregs[3]
                    + renumregs[4];
            }
            5 => {
                permutation_encoding |= 120 * renumregs[1]
                    + 24 * renumregs[2]
                    + 6 * renumregs[3]
                    + 2 * renumregs[4]
                    + renumregs[5];
            }
            4 => {
                permutation_encoding |=
                    60 * renumregs[2] + 12 * renumregs[3] + 3 * renumregs[4] + renumregs[5];
            }
            3 => {
                permutation_encoding |= 20 * renumregs[3] + 4 * renumregs[4] + renumregs[5];
            }
            2 => {
                permutation_encoding |= 5 * renumregs[4] + renumregs[5];
            }
            1 => {
                permutation_encoding |= renumregs[5];
            }
            0 => {
                // do nothing
            }
            _ => unreachable!(),
        }
        permutation_encoding
    }
    fn assert_opcodes_match<A, B>(mut a: A, mut b: B)
    where
        A: Iterator<Item = CompactCfiOp>,
        B: Iterator<Item = CompactCfiOp>,
    {
        while let (Some(a_op), Some(b_op)) = (a.next(), b.next()) {
            assert_eq!(a_op, b_op);
        }
        assert!(b.next().is_none());
        assert!(a.next().is_none());
    }

    #[test]
    // Make sure we error out for an unknown version of this section
    fn test_compact_unknown_version() -> Result<(), MachError> {
        {
            let offset = &mut 0;
            let mut section = vec![0u8; 1024];

            // Version 0 doesn't exist
            section.gwrite(0u32, offset)?;

            assert!(CompactUnwindInfoIter::new(&section, true, Arch::Amd64).is_err());
        }

        {
            let offset = &mut 0;
            let mut section = vec![0; 1024];

            // Version 2 doesn't exist
            section.gwrite(2u32, offset)?;
            assert!(CompactUnwindInfoIter::new(&section, true, Arch::X86).is_err());
        }
        Ok(())
    }

    #[test]
    // Make sure we handle a section with no entries reasonably
    fn test_compact_empty() -> Result<(), MachError> {
        let offset = &mut 0;
        let mut section = vec![0u8; 1024];

        // Just set the version, everything else is 0
        section.gwrite(1u32, offset)?;

        let mut iter = CompactUnwindInfoIter::new(&section, true, Arch::Amd64)?;
        assert!(iter.next()?.is_none());
        assert!(iter.next()?.is_none());

        Ok(())
    }

    #[test]
    // Create a reasonable structure that has both kinds of second-level pages
    // and poke at some corner cases. opcode values are handled opaquely, just
    // checking that they roundtrip correctly.
    fn test_compact_structure() -> Result<(), MachError> {
        let global_opcodes: Vec<u32> = vec![0, 2, 4, 7];
        assert!(global_opcodes.len() <= MAX_GLOBAL_OPCODES_LEN as usize);
        let personalities: Vec<u32> = vec![7, 12, 3];
        assert!(personalities.len() <= MAX_PERSONALITIES_LEN as usize);

        // instruction_address, lsda_address
        let lsdas: Vec<(u32, u32)> = vec![(0, 1), (7, 3), (18, 5)];

        // first_instruction_address, second_page_offset, lsda_offset
        let mut first_entries: Vec<(u32, u32, u32)> = vec![];

        /////////////////////////////////////////////////
        //          Values we will be testing          //
        /////////////////////////////////////////////////

        // page entries are instruction_address, opcode
        let mut regular_entries: Vec<Vec<(u32, u32)>> = vec![
            // Some data
            vec![(1, 7), (3, 8), (6, 10), (10, 4)],
            vec![(20, 5), (21, 2), (24, 7), (25, 0)],
            // Page len 1
            vec![(29, 8)],
        ];
        let mut compressed_entries: Vec<Vec<(u32, u32)>> = vec![
            // Some data
            vec![(10001, 7), (10003, 8), (10006, 10), (10010, 4)],
            vec![(10020, 5), (10021, 2), (10024, 7), (10025, 0)],
            // Page len 1
            vec![(10029, 8)],
        ];

        // max-len regular page
        let mut temp = vec![];
        let base_instruction = 100;
        for i in 0..MAX_REGULAR_SECOND_LEVEL_ENTRIES {
            temp.push((base_instruction + i as u32, i as u32))
        }
        regular_entries.push(temp);

        // max-len compact page (only global entries)
        let mut temp = vec![];
        let base_instruction = 10100;
        for i in 0..MAX_COMPRESSED_SECOND_LEVEL_ENTRIES {
            temp.push((base_instruction + i as u32, 2))
        }
        compressed_entries.push(temp);

        // max-len compact page (max local entries)
        let mut temp = vec![];
        let base_instruction = 14100;
        for i in 0..MAX_COMPRESSED_SECOND_LEVEL_ENTRIES_WITH_MAX_LOCALS {
            temp.push((
                base_instruction + i as u32,
                100 + (i as u32 % MAX_LOCAL_OPCODES_LEN),
            ))
        }
        compressed_entries.push(temp);

        ///////////////////////////////////////////////////////
        //               Compute the format                  //
        ///////////////////////////////////////////////////////

        // First temporarily write the second level pages into other buffers
        let mut second_level_pages: Vec<[u8; PAGE_SIZE]> = vec![];
        for page in &regular_entries {
            second_level_pages.push([0; PAGE_SIZE]);
            let buf = second_level_pages.last_mut().unwrap();
            let buf_offset = &mut 0;

            // kind
            buf.gwrite(REGULAR_PAGE_KIND, buf_offset)?;

            // entry array offset + len
            buf.gwrite(REGULAR_PAGE_HEADER_LEN as u16, buf_offset)?;
            buf.gwrite(page.len() as u16, buf_offset)?;

            for &(insruction_address, opcode) in page {
                buf.gwrite(insruction_address, buf_offset)?;
                buf.gwrite(opcode, buf_offset)?;
            }
        }

        for page in &compressed_entries {
            second_level_pages.push([0; PAGE_SIZE]);
            let buf = second_level_pages.last_mut().unwrap();
            let buf_offset = &mut 0;

            // Compute a palete for local opcodes
            // (this is semi-quadratic in that it can do 255 * 1000 iterations, it's fine)
            let mut local_opcodes = vec![];
            let mut indices = vec![];
            for &(_, opcode) in page {
                if let Some((idx, _)) = global_opcodes
                    .iter()
                    .enumerate()
                    .find(|&(_, &global_opcode)| global_opcode == opcode)
                {
                    indices.push(idx);
                } else if let Some((idx, _)) = local_opcodes
                    .iter()
                    .enumerate()
                    .find(|&(_, &global_opcode)| global_opcode == opcode)
                {
                    indices.push(global_opcodes.len() + idx);
                } else {
                    local_opcodes.push(opcode);
                    indices.push(global_opcodes.len() + local_opcodes.len() - 1);
                }
            }
            assert!(local_opcodes.len() <= MAX_LOCAL_OPCODES_LEN as usize);

            let entries_offset = COMPRESSED_PAGE_HEADER_LEN + local_opcodes.len() * 4;
            let first_address = page.first().unwrap().0;
            // kind
            buf.gwrite(COMPRESSED_PAGE_KIND, buf_offset)?;

            // entry array offset + len
            buf.gwrite(entries_offset as u16, buf_offset)?;
            buf.gwrite(page.len() as u16, buf_offset)?;

            // local opcodes array + len
            buf.gwrite(COMPRESSED_PAGE_HEADER_LEN as u16, buf_offset)?;
            buf.gwrite(local_opcodes.len() as u16, buf_offset)?;

            for opcode in local_opcodes {
                buf.gwrite(opcode, buf_offset)?;
            }
            for (&(instruction_address, _opcode), idx) in page.iter().zip(indices) {
                let compressed_address = (instruction_address - first_address) & 0x00FF_FFFF;
                let compressed_idx = (idx as u32) << 24;
                assert_eq!(compressed_address + first_address, instruction_address);
                assert_eq!(idx & 0xFFFF_FF00, 0);

                let compressed_opcode: u32 = compressed_address | compressed_idx;
                buf.gwrite(compressed_opcode, buf_offset)?;
            }
        }

        let header_size: u32 = 4 * 7;
        let global_opcodes_offset: u32 = header_size;
        let personalities_offset: u32 = global_opcodes_offset + global_opcodes.len() as u32 * 4;
        let first_entries_offset: u32 = personalities_offset + personalities.len() as u32 * 4;
        let lsdas_offset: u32 = first_entries_offset + (second_level_pages.len() + 1) as u32 * 12;
        let second_level_pages_offset: u32 =
            align(lsdas_offset + lsdas.len() as u32 * 8, PAGE_SIZE as u32);
        let final_size: u32 =
            second_level_pages_offset + second_level_pages.len() as u32 * PAGE_SIZE as u32;

        // Validate that we have strictly monotonically increasing addresses,
        // and build the first-level entries.
        let mut cur_address = 0;
        for (idx, page) in regular_entries
            .iter()
            .chain(compressed_entries.iter())
            .enumerate()
        {
            let first_address = page.first().unwrap().0;
            let page_offset = second_level_pages_offset + PAGE_SIZE as u32 * idx as u32;
            first_entries.push((first_address, page_offset, lsdas_offset));

            for &(address, _) in page {
                assert!(address > cur_address);
                cur_address = address;
            }
        }
        assert_eq!(second_level_pages.len(), first_entries.len());
        // Push the null page into our first_entries
        first_entries.push((cur_address + 1, 0, 0));

        ///////////////////////////////////////////////////////
        //                  Emit the binary                  //
        ///////////////////////////////////////////////////////

        let offset = &mut 0;
        let mut section = vec![0u8; final_size as usize];

        // Write the header
        section.gwrite(1u32, offset)?;

        section.gwrite(global_opcodes_offset, offset)?;
        section.gwrite(global_opcodes.len() as u32, offset)?;

        section.gwrite(personalities_offset, offset)?;
        section.gwrite(personalities.len() as u32, offset)?;

        section.gwrite(first_entries_offset, offset)?;
        section.gwrite(first_entries.len() as u32, offset)?;

        // Write the arrays
        assert_eq!(*offset as u32, global_opcodes_offset);
        for &opcode in &global_opcodes {
            section.gwrite(opcode, offset)?;
        }
        assert_eq!(*offset as u32, personalities_offset);
        for &personality in &personalities {
            section.gwrite(personality, offset)?;
        }
        assert_eq!(*offset as u32, first_entries_offset);
        for &entry in &first_entries {
            section.gwrite(entry.0, offset)?;
            section.gwrite(entry.1, offset)?;
            section.gwrite(entry.2, offset)?;
        }
        assert_eq!(*offset as u32, lsdas_offset);
        for &lsda in &lsdas {
            section.gwrite(lsda.0, offset)?;
            section.gwrite(lsda.1, offset)?;
        }

        // Write the pages
        *offset = second_level_pages_offset as usize;
        for second_level_page in &second_level_pages {
            for byte in second_level_page {
                section.gwrite(byte, offset)?;
            }
        }

        ///////////////////////////////////////////////////////
        //         Test that everything roundtrips           //
        ///////////////////////////////////////////////////////

        let mut iter = CompactUnwindInfoIter::new(&section, true, Arch::Amd64)?;
        let mut orig_entries = regular_entries
            .iter()
            .chain(compressed_entries.iter())
            .flatten();

        while let (Some(entry), Some((orig_address, orig_opcode))) =
            (iter.next()?, orig_entries.next())
        {
            assert_eq!(entry.instruction_address, *orig_address);
            assert_eq!(entry.opcode.0, *orig_opcode);
        }

        // Confirm both were completely exhausted at the same time
        assert!(iter.next()?.is_none());
        assert_eq!(orig_entries.next(), None);

        Ok(())
    }

    #[test]
    fn test_compact_opcodes_x86() -> Result<(), MachError> {
        // Make an empty but valid section to initialize the CompactUnwindInfoIter
        let pointer_size = 4;
        let frameless_reg_count_offset = 32 - 8 - 8 - 3 - 3;
        let stack_size_offset = 32 - 8 - 8;
        let offset = &mut 0;
        let mut section = vec![0u8; 1024];
        // Just set the version, everything else is 0
        section.gwrite(1u32, offset)?;

        let iter = CompactUnwindInfoIter::new(&section, true, Arch::X86)?;

        // Check that the null opcode is handled reasonably
        {
            let opcode = Opcode(0);
            assert!(matches!(opcode.instructions(&iter), CompactUnwindOp::None));
        }

        // Check that dwarf opcodes work
        {
            let opcode = Opcode(X86_MODE_DWARF | 0x00123456);
            assert!(matches!(
                opcode.instructions(&iter),
                CompactUnwindOp::UseDwarfFde {
                    offset_in_eh_frame: 0x00123456
                }
            ));
        }

        // Check that rbp opcodes work
        {
            // Simple, no general registers to restore
            let stack_size: i32 = 0xa1;
            let registers = [0, 0, 0, 0, 0];
            let opcode = Opcode(
                X86_MODE_RBP_FRAME
                    | pack_x86_rbp_registers(registers)
                    | (stack_size as u32) << stack_size_offset,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // One general register to restore
            let stack_size: i32 = 0x13;
            let registers = [1, 0, 0, 0, 0];
            let opcode = Opcode(
                X86_MODE_RBP_FRAME
                    | pack_x86_rbp_registers(registers)
                    | (stack_size as u32) << stack_size_offset,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(1).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2) * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // All general register slots used
            let stack_size: i32 = 0xc2;
            let registers = [2, 3, 4, 5, 6];
            let opcode = Opcode(
                X86_MODE_RBP_FRAME
                    | pack_x86_rbp_registers(registers)
                    | (stack_size as u32) << stack_size_offset,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(2).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(3).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 1) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(4).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 2) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(5).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 3) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(6).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 4) * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // Holes in the general registers
            let stack_size: i32 = 0xa7;
            let registers = [2, 0, 4, 0, 6];
            let opcode = Opcode(
                X86_MODE_RBP_FRAME
                    | pack_x86_rbp_registers(registers)
                    | (stack_size as u32) << stack_size_offset,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(2).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(4).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 2) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(6).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 4) * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }

        // Check that stack-immediate opcodes work
        {
            // Simple, no general registers to restore
            let stack_size: i32 = 0xa1;
            let packed_stack_size = (stack_size as u32) << stack_size_offset;
            let num_regs = 0;
            let packed_num_regs = num_regs << frameless_reg_count_offset;
            let registers = [0, 0, 0, 0, 0, 0];
            let opcode = Opcode(
                X86_MODE_STACK_IMMD
                    | pack_x86_stackless_registers(num_regs, registers)
                    | packed_num_regs
                    | packed_stack_size,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // One general register to restore
            let stack_size: i32 = 0x13;
            let packed_stack_size = (stack_size as u32) << stack_size_offset;
            let num_regs = 1;
            let packed_num_regs = num_regs << frameless_reg_count_offset;
            let registers = [0, 0, 0, 0, 0, 1];
            let opcode = Opcode(
                X86_MODE_STACK_IMMD
                    | pack_x86_stackless_registers(num_regs, registers)
                    | packed_num_regs
                    | packed_stack_size,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(1).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // All general register slots used
            let stack_size: i32 = 0xc1;
            let packed_stack_size = (stack_size as u32) << stack_size_offset;
            let num_regs = 6;
            let packed_num_regs = num_regs << frameless_reg_count_offset;
            let registers = [1, 2, 3, 4, 5, 6];
            let opcode = Opcode(
                X86_MODE_STACK_IMMD
                    | pack_x86_stackless_registers(num_regs, registers)
                    | packed_num_regs
                    | packed_stack_size,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(6).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(5).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -3 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(4).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -4 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(3).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -5 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(2).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -6 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(1).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -7 * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // Some general registers
            let stack_size: i32 = 0xf1;
            let packed_stack_size = (stack_size as u32) << stack_size_offset;
            let num_regs = 3;
            let packed_num_regs = num_regs << frameless_reg_count_offset;
            let registers = [0, 0, 0, 2, 4, 6];
            let opcode = Opcode(
                X86_MODE_STACK_IMMD
                    | pack_x86_stackless_registers(num_regs, registers)
                    | packed_num_regs
                    | packed_stack_size,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(6).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(4).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -3 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(2).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -4 * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }

        // Check that stack-indirect opcodes work (feature unimplemented)
        {
            let _opcode = Opcode(X86_MODE_STACK_IND);
            // ... tests
        }

        Ok(())
    }

    #[test]
    fn test_compact_opcodes_x64() -> Result<(), MachError> {
        // Make an empty but valid section to initialize the CompactUnwindInfoIter
        let pointer_size = 8;
        let frameless_reg_count_offset = 32 - 8 - 8 - 3 - 3;
        let stack_size_offset = 32 - 8 - 8;
        let offset = &mut 0;
        let mut section = vec![0u8; 1024];
        // Just set the version, everything else is 0
        section.gwrite(1u32, offset)?;

        let iter = CompactUnwindInfoIter::new(&section, true, Arch::Amd64)?;

        // Check that the null opcode is handled reasonably
        {
            let opcode = Opcode(0);
            assert!(matches!(opcode.instructions(&iter), CompactUnwindOp::None));
        }

        // Check that dwarf opcodes work
        {
            let opcode = Opcode(X86_MODE_DWARF | 0x00123456);
            assert!(matches!(
                opcode.instructions(&iter),
                CompactUnwindOp::UseDwarfFde {
                    offset_in_eh_frame: 0x00123456
                }
            ));
        }

        // Check that rbp opcodes work
        {
            // Simple, no general registers to restore
            let stack_size: i32 = 0xa1;
            let registers = [0, 0, 0, 0, 0];
            let opcode = Opcode(
                X86_MODE_RBP_FRAME
                    | pack_x86_rbp_registers(registers)
                    | (stack_size as u32) << stack_size_offset,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // One general register to restore
            let stack_size: i32 = 0x13;
            let registers = [1, 0, 0, 0, 0];
            let opcode = Opcode(
                X86_MODE_RBP_FRAME
                    | pack_x86_rbp_registers(registers)
                    | (stack_size as u32) << stack_size_offset,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(1).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2) * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // All general register slots used
            let stack_size: i32 = 0xc2;
            let registers = [2, 3, 4, 5, 6];
            let opcode = Opcode(
                X86_MODE_RBP_FRAME
                    | pack_x86_rbp_registers(registers)
                    | (stack_size as u32) << stack_size_offset,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(2).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(3).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 1) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(4).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 2) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(5).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 3) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(6).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 4) * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // Holes in the general registers
            let stack_size: i32 = 0xa7;
            let registers = [2, 0, 4, 0, 6];
            let opcode = Opcode(
                X86_MODE_RBP_FRAME
                    | pack_x86_rbp_registers(registers)
                    | (stack_size as u32) << stack_size_offset,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(2).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(4).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 2) * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(6).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -(stack_size + 2 - 4) * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }

        // Check that stack-immediate opcodes work
        {
            // Simple, no general registers to restore
            let stack_size: i32 = 0xa1;
            let packed_stack_size = (stack_size as u32) << stack_size_offset;
            let num_regs = 0;
            let packed_num_regs = num_regs << frameless_reg_count_offset;
            let registers = [0, 0, 0, 0, 0, 0];
            let opcode = Opcode(
                X86_MODE_STACK_IMMD
                    | pack_x86_stackless_registers(num_regs, registers)
                    | packed_num_regs
                    | packed_stack_size,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // One general register to restore
            let stack_size: i32 = 0x13;
            let packed_stack_size = (stack_size as u32) << stack_size_offset;
            let num_regs = 1;
            let packed_num_regs = num_regs << frameless_reg_count_offset;
            let registers = [0, 0, 0, 0, 0, 1];
            let opcode = Opcode(
                X86_MODE_STACK_IMMD
                    | pack_x86_stackless_registers(num_regs, registers)
                    | packed_num_regs
                    | packed_stack_size,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(1).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // All general register slots used
            let stack_size: i32 = 0xc1;
            let packed_stack_size = (stack_size as u32) << stack_size_offset;
            let num_regs = 6;
            let packed_num_regs = num_regs << frameless_reg_count_offset;
            let registers = [1, 2, 3, 4, 5, 6];
            let opcode = Opcode(
                X86_MODE_STACK_IMMD
                    | pack_x86_stackless_registers(num_regs, registers)
                    | packed_num_regs
                    | packed_stack_size,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(6).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(5).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -3 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(4).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -4 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(3).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -5 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(2).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -6 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(1).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -7 * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // Some general registers
            let stack_size: i32 = 0xf1;
            let packed_stack_size = (stack_size as u32) << stack_size_offset;
            let num_regs = 3;
            let packed_num_regs = num_regs << frameless_reg_count_offset;
            let registers = [0, 0, 0, 2, 4, 6];
            let opcode = Opcode(
                X86_MODE_STACK_IMMD
                    | pack_x86_stackless_registers(num_regs, registers)
                    | packed_num_regs
                    | packed_stack_size,
            );
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(6).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(4).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -3 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_x86_encoded(2).unwrap(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -4 * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }

        // Check that stack-indirect opcodes work (feature unimplemented)
        {
            let _opcode = Opcode(X86_MODE_STACK_IND);
            // ... tests
        }

        Ok(())
    }

    #[test]
    fn test_compact_opcodes_arm64() -> Result<(), MachError> {
        // Make an empty but valid section to initialize the CompactUnwindInfoIter
        let pointer_size = 8;
        let frameless_stack_size_offset = 32 - 8 - 12;
        let offset = &mut 0;
        let mut section = vec![0u8; 1024];
        // Just set the version, everything else is 0
        section.gwrite(1u32, offset)?;

        let iter = CompactUnwindInfoIter::new(&section, true, Arch::Arm64)?;

        // Check that the null opcode is handled reasonably
        {
            let opcode = Opcode(0);
            assert!(matches!(opcode.instructions(&iter), CompactUnwindOp::None));
        }

        // Check that dwarf opcodes work
        {
            let opcode = Opcode(ARM64_MODE_DWARF | 0x00123456);
            assert!(matches!(
                opcode.instructions(&iter),
                CompactUnwindOp::UseDwarfFde {
                    offset_in_eh_frame: 0x00123456
                }
            ));
        }

        // Check that frame opcodes work
        {
            // Simple, no general registers to restore
            let registers = 0b0_0000_0000;
            let opcode = Opcode(ARM64_MODE_FRAME | registers);
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // One general register pair to restore
            let registers = 0b0_0100_0000;
            let opcode = Opcode(ARM64_MODE_FRAME | registers);
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 12),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -3 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 13),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -4 * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // All general purpose registers restored
            let registers = 0b1_1111_1111;
            let opcode = Opcode(ARM64_MODE_FRAME | registers);
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -3 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 1),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -4 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 2),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -5 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 3),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -6 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 4),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -7 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 5),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -8 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 6),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -9 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 7),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -10 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 8),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -11 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 9),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -12 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 10),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -13 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 11),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -14 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 12),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -15 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 13),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -16 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 14),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -17 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 15),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -18 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 16),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -19 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 17),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -20 * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }
        {
            // Holes between the registers
            let registers = 0b1_0101_0101;
            let opcode = Opcode(ARM64_MODE_FRAME | registers);
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::frame_pointer(),
                    offset_from_src: 2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::frame_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -2 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -3 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 1),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -4 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 4),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -5 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 5),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -6 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 8),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -7 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 9),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -8 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 12),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -9 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 13),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -10 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 16),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -11 * pointer_size,
                },
                CompactCfiOp::RegisterAt {
                    dest_reg: CompactCfiRegister::from_arm64_encoded(ARM64_REG_BASE + 17),
                    src_reg: CompactCfiRegister::cfa(),
                    offset_from_src: -12 * pointer_size,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }

        // Check that the frameless opcode works
        {
            let stack_size = 0xae1;
            let packed_stack_size = stack_size << frameless_stack_size_offset;
            let opcode = Opcode(ARM64_MODE_FRAMELESS | packed_stack_size);
            let expected = vec![
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::cfa(),
                    src_reg: CompactCfiRegister::stack_pointer(),
                    offset_from_src: stack_size as i32 * 16,
                },
                CompactCfiOp::RegisterIs {
                    dest_reg: CompactCfiRegister::instruction_pointer(),
                    src_reg: CompactCfiRegister::link_register(),
                    offset_from_src: 0,
                },
            ];

            match opcode.instructions(&iter) {
                CompactUnwindOp::CfiOps(ops) => assert_opcodes_match(ops, expected.into_iter()),
                _ => unreachable!(),
            }
        }

        Ok(())
    }

    #[test]
    fn test_compact_register_naming() -> Result<(), MachError> {
        // Just guarding against special register names breaking

        let offset = &mut 0;
        let mut section = vec![0u8; 1024];
        // Just set the version, everything else is 0
        section.gwrite(1u32, offset)?;

        {
            // ARM64 register names
            let iter = CompactUnwindInfoIter::new(&section, true, Arch::Arm64)?;

            assert_eq!(CompactCfiRegister::cfa().name(&iter), Some("cfa"));
            assert_eq!(CompactCfiRegister::stack_pointer().name(&iter), Some("sp"));
            assert_eq!(
                CompactCfiRegister::instruction_pointer().name(&iter),
                Some("pc")
            );
            assert_eq!(CompactCfiRegister::frame_pointer().name(&iter), Some("x29"));
            assert_eq!(CompactCfiRegister::link_register().name(&iter), Some("x30"));
        }

        {
            // x86 register names
            let iter = CompactUnwindInfoIter::new(&section, true, Arch::X86)?;

            assert_eq!(CompactCfiRegister::cfa().name(&iter), Some("cfa"));
            assert_eq!(CompactCfiRegister::stack_pointer().name(&iter), Some("esp"));
            assert_eq!(
                CompactCfiRegister::instruction_pointer().name(&iter),
                Some("eip")
            );
            assert_eq!(CompactCfiRegister::frame_pointer().name(&iter), Some("ebp"));
        }

        {
            // x64 register names
            let iter = CompactUnwindInfoIter::new(&section, true, Arch::Amd64)?;

            assert_eq!(CompactCfiRegister::cfa().name(&iter), Some("cfa"));
            assert_eq!(CompactCfiRegister::stack_pointer().name(&iter), Some("rsp"));
            assert_eq!(
                CompactCfiRegister::instruction_pointer().name(&iter),
                Some("rip")
            );
            assert_eq!(CompactCfiRegister::frame_pointer().name(&iter), Some("rbp"));
        }

        Ok(())
    }
}