1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
use std::borrow::Cow;
use std::fmt;
use std::iter::FromIterator;
use std::ops::{Bound, Deref, RangeBounds};
use std::str::FromStr;

use symbolic_common::{clean_path, join_path, Arch, CodeId, DebugId, Name};

/// An error returned for unknown or invalid `ObjectKinds`.
#[derive(Debug)]
pub struct UnknownObjectKindError;

impl fmt::Display for UnknownObjectKindError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "unknown object class")
    }
}

impl std::error::Error for UnknownObjectKindError {}

/// Represents the designated use of the object file and hints at its contents.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub enum ObjectKind {
    /// There is no object class specified for this object file.
    None,

    /// The Relocatable file type is the format used for intermediate object
    /// files. It is a very compact format containing all its sections in one
    /// segment. The compiler and assembler usually create one Relocatable file
    /// for each source code file. By convention, the file name extension for
    /// this format is .o.
    Relocatable,

    /// The Executable file type is the format used by standard executable
    /// programs.
    Executable,

    /// The Library file type is for dynamic shared libraries. It contains
    /// some additional tables to support multiple modules. By convention, the
    /// file name extension for this format is .dylib, except for the main
    /// shared library of a framework, which does not usually have a file name
    /// extension.
    Library,

    /// The Dump file type is used to store core files, which are
    /// traditionally created when a program crashes. Core files store the
    /// entire address space of a process at the time it crashed. You can
    /// later run gdb on the core file to figure out why the crash occurred.
    Dump,

    /// The Debug file type designates files that store symbol information
    /// for a corresponding binary file.
    Debug,

    /// A container that just stores source code files, but no other debug
    /// information corresponding to the original object file.
    Sources,

    /// The Other type represents any valid object class that does not fit any
    /// of the other classes. These are mostly CPU or OS dependent, or unique
    /// to a single kind of object.
    Other,
}

impl ObjectKind {
    /// Returns the name of the object kind.
    pub fn name(self) -> &'static str {
        match self {
            ObjectKind::None => "none",
            ObjectKind::Relocatable => "rel",
            ObjectKind::Executable => "exe",
            ObjectKind::Library => "lib",
            ObjectKind::Dump => "dump",
            ObjectKind::Debug => "dbg",
            ObjectKind::Sources => "src",
            ObjectKind::Other => "other",
        }
    }

    /// Returns a human readable name of the object kind.
    ///
    /// This is also used in alternate formatting:
    ///
    /// ```rust
    /// # use symbolic_debuginfo::ObjectKind;
    /// assert_eq!(format!("{:#}", ObjectKind::Executable), ObjectKind::Executable.human_name());
    /// ```
    pub fn human_name(self) -> &'static str {
        match self {
            ObjectKind::None => "file",
            ObjectKind::Relocatable => "object",
            ObjectKind::Executable => "executable",
            ObjectKind::Library => "library",
            ObjectKind::Dump => "memory dump",
            ObjectKind::Debug => "debug companion",
            ObjectKind::Sources => "sources",
            ObjectKind::Other => "file",
        }
    }
}

impl fmt::Display for ObjectKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if f.alternate() {
            f.write_str(self.human_name())
        } else {
            f.write_str(self.name())
        }
    }
}

impl FromStr for ObjectKind {
    type Err = UnknownObjectKindError;

    fn from_str(string: &str) -> Result<ObjectKind, UnknownObjectKindError> {
        Ok(match string {
            "none" => ObjectKind::None,
            "rel" => ObjectKind::Relocatable,
            "exe" => ObjectKind::Executable,
            "lib" => ObjectKind::Library,
            "dump" => ObjectKind::Dump,
            "dbg" => ObjectKind::Debug,
            "src" => ObjectKind::Sources,
            "other" => ObjectKind::Other,
            _ => return Err(UnknownObjectKindError),
        })
    }
}

/// An error returned for unknown or invalid [`FileFormats`](enum.FileFormat.html).
#[derive(Debug)]
pub struct UnknownFileFormatError;

impl fmt::Display for UnknownFileFormatError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "unknown file format")
    }
}

impl std::error::Error for UnknownFileFormatError {}

/// Represents the physical object file format.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub enum FileFormat {
    /// An unknown file format.
    Unknown,
    /// Breakpad ASCII symbol.
    Breakpad,
    /// Executable and Linkable Format, used on Linux.
    Elf,
    /// Mach Objects, used on macOS and iOS derivatives.
    MachO,
    /// Program Database, the debug companion format on Windows.
    Pdb,
    /// Portable Executable, an extension of COFF used on Windows.
    Pe,
    /// Source code bundle ZIP.
    SourceBundle,
    /// WASM container.
    Wasm,
}

impl FileFormat {
    /// Returns the name of the file format.
    pub fn name(self) -> &'static str {
        match self {
            FileFormat::Unknown => "unknown",
            FileFormat::Breakpad => "breakpad",
            FileFormat::Elf => "elf",
            FileFormat::MachO => "macho",
            FileFormat::Pdb => "pdb",
            FileFormat::Pe => "pe",
            FileFormat::SourceBundle => "sourcebundle",
            FileFormat::Wasm => "wasm",
        }
    }
}

impl fmt::Display for FileFormat {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(self.name())
    }
}

impl FromStr for FileFormat {
    type Err = UnknownFileFormatError;

    fn from_str(string: &str) -> Result<FileFormat, UnknownFileFormatError> {
        Ok(match string {
            "breakpad" => FileFormat::Breakpad,
            "elf" => FileFormat::Elf,
            "macho" => FileFormat::MachO,
            "pdb" => FileFormat::Pdb,
            "pe" => FileFormat::Pe,
            "sourcebundle" => FileFormat::SourceBundle,
            "wasm" => FileFormat::Wasm,
            _ => return Err(UnknownFileFormatError),
        })
    }
}

/// A symbol from a symbol table.
#[derive(Clone, Default, Eq, PartialEq)]
pub struct Symbol<'data> {
    /// The name of the symbol.
    ///
    /// This name is generally mangled. It can be demangled by constructing a `Name` instance and
    /// calling demangle on it. Certain object files might only store demangled symbol names.
    pub name: Option<Cow<'data, str>>,

    /// The relative address of this symbol.
    pub address: u64,

    /// The size of this symbol, if known.
    ///
    /// When loading symbols from an object file, the size will generally not be known. Instead,
    /// construct a [`SymbolMap`] from the object, which also fills in sizes.
    ///
    /// [`SymbolMap`]: struct.SymbolMap.html
    pub size: u64,
}

impl<'data> Symbol<'data> {
    /// Returns the name of this symbol as string.
    pub fn name(&self) -> Option<&str> {
        self.name.as_ref().map(Cow::as_ref)
    }

    /// Determines whether the given address is covered by this symbol.
    ///
    /// If the symbol size has not been computed, the address is assumed to be covered if it is
    /// greated than the symbol address. Otherwise, the address must be in the half-open interval
    /// `[address, address + size)`.
    pub fn contains(&self, address: u64) -> bool {
        address >= self.address && (self.size == 0 || address < self.address + self.size)
    }
}

impl<'d> fmt::Debug for Symbol<'d> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Symbol")
            .field("name", &self.name().unwrap_or("<unknown>"))
            .field("address", &format_args!("{:#x}", self.address))
            .field("size", &format_args!("{:#x}", self.size))
            .finish()
    }
}

/// IntoIterator type for [`SymbolMap`](struct.SymbolMap.html).
pub type SymbolMapIter<'data> = std::vec::IntoIter<Symbol<'data>>;

/// A sorted list of symbols, suitable for quick lookups.
///
/// This type can either be computed from a list or iterator of symbols, or preferrably directly
/// by calling [`ObjectLike::symbol_map`] on any object. Symbols in the symbol map are guaranteed to
/// have a `size` set, except for the last symbol, which is computed by taking the offset to the
/// subsequent symbol.
///
/// `SymbolMap` also exposes a read-only view on the sorted slice of symbols. It can be converted to
/// and from lists of symbols.
///
/// ## Example
///
/// ```rust
/// # use symbolic_debuginfo::{Symbol, SymbolMap};
/// let map = SymbolMap::from(vec![
///     Symbol { name: Some("A".into()), address: 0x4400, size: 0 },
///     Symbol { name: Some("B".into()), address: 0x4200, size: 0 },
///     Symbol { name: Some("C".into()), address: 0x4000, size: 0 },
/// ]);
///
/// assert_eq!(map[0], Symbol {
///     name: Some("C".into()),
///     address: 0x4000,
///     size: 0x200,
/// });
/// ```
///
/// [`ObjectLike::symbol_map`]: trait.ObjectLike.html#tymethod.symbol_map
#[derive(Clone, Debug, Default)]
pub struct SymbolMap<'data> {
    symbols: Vec<Symbol<'data>>,
}

impl<'data> SymbolMap<'data> {
    /// Creates a new, empty symbol map.
    pub fn new() -> Self {
        SymbolMap {
            symbols: Vec::new(),
        }
    }

    /// Looks up a symbol in the symbol map.
    pub fn lookup(&self, address: u64) -> Option<&Symbol<'data>> {
        match self.symbols.binary_search_by_key(&address, Self::key) {
            Ok(index) => Some(&self.symbols[index]),
            Err(0) => None,
            Err(next_index) => {
                let symbol = &self.symbols[next_index - 1];
                if symbol.contains(address) {
                    Some(symbol)
                } else {
                    None
                }
            }
        }
    }

    /// Looks up a symbol covering an entire range.
    ///
    /// This is similar to [`lookup`], but it only returns the symbol result if it _also_ covers the
    /// inclusive end address of the range.
    ///
    /// [`lookup`]: struct.SymbolMap.html#method.lookup
    pub fn lookup_range<R>(&self, range: R) -> Option<&Symbol<'data>>
    where
        R: RangeBounds<u64>,
    {
        let start = match range.start_bound() {
            Bound::Included(start) => *start,
            Bound::Excluded(start) => *start + 1,
            Bound::Unbounded => 0,
        };

        let symbol = self.lookup(start)?;

        let end = match range.end_bound() {
            Bound::Included(end) => *end,
            Bound::Excluded(end) => *end - 1,
            Bound::Unbounded => u64::max_value(),
        };

        if end <= start || symbol.contains(end) {
            Some(symbol)
        } else {
            None
        }
    }

    /// Returns the lookup key for a symbol, which is the symbol's address.
    #[inline(always)]
    fn key(symbol: &Symbol<'data>) -> u64 {
        symbol.address
    }
}

impl<'d> Deref for SymbolMap<'d> {
    type Target = [Symbol<'d>];

    fn deref(&self) -> &Self::Target {
        &self.symbols
    }
}

impl<'data> IntoIterator for SymbolMap<'data> {
    type Item = Symbol<'data>;
    type IntoIter = SymbolMapIter<'data>;

    fn into_iter(self) -> Self::IntoIter {
        self.symbols.into_iter()
    }
}

impl<'data, 'a> IntoIterator for &'a SymbolMap<'data> {
    type Item = &'a Symbol<'data>;
    type IntoIter = std::slice::Iter<'a, Symbol<'data>>;

    fn into_iter(self) -> Self::IntoIter {
        self.symbols.iter()
    }
}

impl<'d> AsRef<[Symbol<'d>]> for SymbolMap<'d> {
    fn as_ref(&self) -> &[Symbol<'d>] {
        &self.symbols
    }
}

impl<'d> From<Vec<Symbol<'d>>> for SymbolMap<'d> {
    fn from(mut symbols: Vec<Symbol<'d>>) -> Self {
        if !symbols.is_empty() {
            // NB: This might require stable sorting to ensure determinism if multiple symbols point
            // at the same location. However, this only seems to happen for equivalent variants of
            // the same function.
            //
            // An example would be destructors where D2 (base object destructor) and D1 (complete
            // object destructor) might share the same code. Since those always demangle to the same
            // name, we do not care which function to keep in this case.
            //
            // Inlined functions will generally not appear in this list, unless they _also_ have an
            // explicit function body, in which case they will have a unique address, again.
            dmsort::sort_by_key(&mut symbols, Self::key);

            // Compute sizes of consecutive symbols if the size has not been provided by the symbol
            // iterator. In the same go, drop all but the first symbols at any given address. We do
            // not rely on the size of symbols in this case, since the ranges might still be
            // overlapping.
            symbols.dedup_by(|next, symbol| {
                if symbol.size == 0 {
                    symbol.size = next.address - symbol.address;
                }
                symbol.address == next.address
            })
        }

        SymbolMap { symbols }
    }
}

impl<'d> FromIterator<Symbol<'d>> for SymbolMap<'d> {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = Symbol<'d>>,
    {
        Vec::from_iter(iter).into()
    }
}

/// File information referred by [`LineInfo`](struct.LineInfo.html) comprising a directory and name.
///
/// The file path is usually relative to a compilation directory. It might contain parent directory
/// segments (`../`).
#[derive(Clone, Default, Eq, PartialEq)]
pub struct FileInfo<'data> {
    /// The file's basename.
    pub name: &'data [u8],
    /// Path to the file.
    pub dir: &'data [u8],
}

impl<'data> FileInfo<'data> {
    /// Creates a `FileInfo` from a joined path by trying to split it.
    pub(crate) fn from_path(path: &'data [u8]) -> Self {
        let (dir, name) = symbolic_common::split_path_bytes(path);

        FileInfo {
            name,
            dir: dir.unwrap_or_default(),
        }
    }

    /// The file name as UTF-8 string.
    pub fn name_str(&self) -> Cow<'data, str> {
        String::from_utf8_lossy(self.name)
    }

    /// Path to the file relative to the compilation directory.
    pub fn dir_str(&self) -> Cow<'data, str> {
        String::from_utf8_lossy(self.dir)
    }

    /// The full path to the file, relative to the compilation directory.
    pub fn path_str(&self) -> String {
        let joined = join_path(&self.dir_str(), &self.name_str());
        clean_path(&joined).into_owned()
    }
}

impl fmt::Debug for FileInfo<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("FileInfo")
            .field("name", &String::from_utf8_lossy(self.name))
            .field("dir", &String::from_utf8_lossy(self.dir))
            .finish()
    }
}

/// File information comprising a compilation directory, relative path and name.
pub struct FileEntry<'data> {
    /// Path to the compilation directory. File paths are relative to this.
    pub compilation_dir: &'data [u8],
    /// File name and path.
    pub info: FileInfo<'data>,
}

impl<'data> FileEntry<'data> {
    /// Path to the compilation directory.
    pub fn compilation_dir_str(&self) -> Cow<'data, str> {
        String::from_utf8_lossy(self.compilation_dir)
    }

    /// Absolute path to the file, including the compilation directory.
    pub fn abs_path_str(&self) -> String {
        let joined_path = join_path(&self.dir_str(), &self.name_str());
        let joined = join_path(&self.compilation_dir_str(), &joined_path);
        clean_path(&joined).into_owned()
    }
}

impl fmt::Debug for FileEntry<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("FileInfo")
            .field("compilation_dir", &self.compilation_dir_str())
            .field("name", &self.name_str())
            .field("dir", &self.dir_str())
            .finish()
    }
}

impl<'data> Deref for FileEntry<'data> {
    type Target = FileInfo<'data>;

    fn deref(&self) -> &Self::Target {
        &self.info
    }
}

/// File and line number mapping for an instruction address.
#[derive(Clone)]
pub struct LineInfo<'data> {
    /// The instruction address relative to the image base (load address).
    pub address: u64,
    /// Total code size covered by this line record.
    pub size: Option<u64>,
    /// File name and path.
    pub file: FileInfo<'data>,
    /// Absolute line number starting at 1. Zero means no line number.
    pub line: u64,
}

impl fmt::Debug for LineInfo<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut s = f.debug_struct("LineInfo");
        s.field("address", &format_args!("{:#x}", self.address));

        match self.size {
            Some(size) => s.field("size", &format_args!("{:#x}", size)),
            None => s.field("size", &self.size),
        };

        s.field("file", &self.file)
            .field("line", &self.line)
            .finish()
    }
}

/// Debug information for a function.
#[derive(Clone)]
pub struct Function<'data> {
    /// Relative instruction address of the start of the function.
    pub address: u64,
    /// Total code size covered by the function body, including inlined functions.
    pub size: u64,
    /// The name and language of the function symbol.
    pub name: Name<'data>,
    /// Path to the compilation directory. File paths are relative to this.
    pub compilation_dir: &'data [u8],
    /// Lines covered by this function, including inlined children.
    pub lines: Vec<LineInfo<'data>>,
    /// Functions that have been inlined into this function's body.
    pub inlinees: Vec<Function<'data>>,
    /// Specifies whether this function is inlined.
    pub inline: bool,
}

impl Function<'_> {
    /// End address of the entire function body, including inlined functions.
    ///
    /// This address points at the first instruction after the function body.
    pub fn end_address(&self) -> u64 {
        self.address + self.size
    }
}

impl fmt::Debug for Function<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Function")
            .field("address", &format_args!("{:#x}", self.address))
            .field("size", &format_args!("{:#x}", self.size))
            .field("name", &self.name)
            .field(
                "compilation_dir",
                &String::from_utf8_lossy(self.compilation_dir),
            )
            .field("lines", &self.lines)
            .field("inlinees", &self.inlinees)
            .field("inline", &self.inline)
            .finish()
    }
}

/// A dynamically dispatched iterator over items with the given lifetime.
pub type DynIterator<'a, T> = Box<dyn Iterator<Item = T> + 'a>;

/// A stateful session for interfacing with debug information.
///
/// Debug sessions can be obtained via [`ObjectLike::debug_session`]. Since computing a session may
/// be a costly operation, try to reuse the session as much as possible.
///
/// ## Implementing DebugSession
///
/// Reading debug information from object files usually requires loading multiple sections into
/// memory and computing maps for quick random access to certain information. Since this can be a
/// quite costly process, this is encapsulated into a `DebugSession`. The session may hold whatever
/// data and caches may be necessary for efficiently interfacing with the debug info.
///
/// All trait methods on a `DebugSession` receive `&mut self`, to allow mutation of internal cache
/// structures. Lifetimes of returned types are tied to this session's lifetime, which allows to
/// borrow data from the session.
///
/// Examples for things to compute when building a debug session are:
///
///  - Decompress debug information if it is stored with compression.
///  - Build a symbol map for random access to public symbols.
///  - Map string tables and other lookup tables.
///  - Read headers of compilation units (compilands) to resolve cross-unit references.
///
/// [`ObjectLike::debug_session`]: trait.ObjectLike.html#tymethod.debug_session
pub trait DebugSession<'session> {
    /// The error returned when reading debug information fails.
    type Error;

    /// An iterator over all functions in this debug file.
    type FunctionIterator: Iterator<Item = Result<Function<'session>, Self::Error>>;

    /// An iterator over all source files referenced by this debug file.
    type FileIterator: Iterator<Item = Result<FileEntry<'session>, Self::Error>>;

    /// Returns an iterator over all functions in this debug file.
    ///
    /// Functions are iterated in the order they are declared in their compilation units. The
    /// functions yielded by this iterator include all inlinees and line records resolved.
    ///
    /// Note that the iterator holds a mutable borrow on the debug session, which allows it to use
    /// caches and optimize resources while resolving function and line information.
    fn functions(&'session self) -> Self::FunctionIterator;

    /// Returns an iterator over all source files referenced by this debug file.
    fn files(&'session self) -> Self::FileIterator;

    /// Looks up a file's source contents by its full canonicalized path.
    ///
    /// The given path must be canonicalized.
    fn source_by_path(&self, path: &str) -> Result<Option<Cow<'_, str>>, Self::Error>;
}

/// An object containing debug information.
pub trait ObjectLike<'data, 'object> {
    /// Errors thrown when reading information from this object.
    type Error;

    /// A session that allows optimized access to debugging information.
    type Session: for<'session> DebugSession<'session, Error = Self::Error>;

    /// The iterator over the symbols in the public symbol table.
    type SymbolIterator: Iterator<Item = Symbol<'data>>;

    /// The container format of this file.
    fn file_format(&self) -> FileFormat;

    /// The code identifier of this object.
    ///
    /// The identifier can be `None` if it cannot be determined from the object file, for instance,
    /// because the identifier was stripped in the build process.
    fn code_id(&self) -> Option<CodeId>;

    /// The debug information identifier of this object.
    fn debug_id(&self) -> DebugId;

    /// The CPU architecture of this object.
    fn arch(&self) -> Arch;

    /// The kind of this object.
    fn kind(&self) -> ObjectKind;

    /// The address at which the image prefers to be loaded into memory.
    fn load_address(&self) -> u64;

    /// Determines whether this object exposes a public symbol table.
    fn has_symbols(&self) -> bool;

    /// Returns an iterator over symbols in the public symbol table.
    fn symbols(&'object self) -> Self::SymbolIterator;

    /// Returns an ordered map of symbols in the symbol table.
    fn symbol_map(&self) -> SymbolMap<'data>;

    /// Determines whether this object contains debug information.
    fn has_debug_info(&self) -> bool;

    /// Constructs a debugging session.
    ///
    /// A debugging session loads certain information from the object file and creates caches for
    /// efficient access to various records in the debug information. Since this can be quite a
    /// costly process, try to reuse the debugging session as long as possible.
    ///
    /// Constructing this session will also work if the object does not contain debugging
    /// information, in which case the session will be a no-op. This can be checked via
    /// [`has_debug_info`](trait.ObjectLike.html#tymethod.has_debug_info).
    fn debug_session(&'object self) -> Result<Self::Session, Self::Error>;

    /// Determines whether this object contains stack unwinding information.
    fn has_unwind_info(&self) -> bool;

    /// Determines whether this object contains embedded sources.
    fn has_sources(&self) -> bool;
}

mod derive_serde {
    /// Helper macro to implement string based serialization and deserialization.
    ///
    /// If a type implements `FromStr` and `Display` then this automatically
    /// implements a serializer/deserializer for that type that dispatches
    /// appropriately.
    macro_rules! impl_str_serde {
        ($type:ty) => {
            impl ::serde::ser::Serialize for $type {
                fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
                where
                    S: ::serde::ser::Serializer,
                {
                    serializer.serialize_str(self.name())
                }
            }

            impl<'de> ::serde::de::Deserialize<'de> for $type {
                fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
                where
                    D: ::serde::de::Deserializer<'de>,
                {
                    <::std::borrow::Cow<'_, str>>::deserialize(deserializer)?
                        .parse()
                        .map_err(::serde::de::Error::custom)
                }
            }
        };
    }

    impl_str_serde!(super::ObjectKind);
    impl_str_serde!(super::FileFormat);
}

#[cfg(test)]
mod tests {
    use super::*;
    use similar_asserts::assert_eq;

    fn file_info<'a>(dir: &'a str, name: &'a str) -> FileInfo<'a> {
        FileInfo {
            dir: dir.as_bytes(),
            name: name.as_bytes(),
        }
    }

    fn file_entry<'a>(compilation_dir: &'a str, dir: &'a str, name: &'a str) -> FileEntry<'a> {
        FileEntry {
            compilation_dir: compilation_dir.as_bytes(),
            info: file_info(dir, name),
        }
    }

    #[test]
    fn test_file_info() {
        assert_eq!(file_info("", "foo.h").path_str(), "foo.h");
        assert_eq!(
            file_info("C:\\Windows", "foo.h").path_str(),
            "C:\\Windows\\foo.h"
        );
        assert_eq!(
            file_info("/usr/local", "foo.h").path_str(),
            "/usr/local/foo.h"
        );
        assert_eq!(file_info("/usr/local", "../foo.h").path_str(), "/usr/foo.h");
        assert_eq!(file_info("/usr/local", "/foo.h").path_str(), "/foo.h");
    }

    #[test]
    fn test_file_entry() {
        assert_eq!(file_entry("", "", "foo.h").abs_path_str(), "foo.h");
        assert_eq!(
            file_entry("C:\\Windows", "src", "foo.h").abs_path_str(),
            "C:\\Windows\\src\\foo.h"
        );
        assert_eq!(
            file_entry("/usr", "local", "foo.h").abs_path_str(),
            "/usr/local/foo.h"
        );
        assert_eq!(
            file_entry("/usr/local", "..", "foo.h").abs_path_str(),
            "/usr/foo.h"
        );
        assert_eq!(
            file_entry("/usr", "/src", "foo.h").abs_path_str(),
            "/src/foo.h"
        );
    }
}